
Business Rules with

Brick
brian d foy

Nordic Perl Workshop 2007

Field validation is too low-level

Business rules are high-level

Code is for programmers

Connect coders and business

Field validation
is too simple

is_number($age);

cookie_expired($cookie);

amount_ok($n + $m + $o);

required(@fields);

Errors too vague

“Number is out of range”

“Password has invalid characters”

“Field foo is missing”

Helpful messages

“Number was %s but needs to be %s”

“Password can only be alphabetic, but

I found %s”

“Field bar requires field foo, which

was blank”

Loose coupling

Remove business logic from code

Avoid lock-in to technology

Separate architecture

Data::FormValidator

Perfectly fine for simple things

Based on fields

Relationships tough to specify

Poor error reporting

Tried to subclass

Tried to refactor

Easy for programmers

presence

right format

allowed value

one-to-one

ignore business

Hard for business

Many-to-many relationships

Out-of-band information

Legacy rules

Exceptions

Don’t know Perl

Programmers think...

Business is...

Full validation

Presence

Format

Valid Value

Relationships

Right Value

Programmers
write code

No one else does

Programmers
read code

No one else does

Business people
know the rules

No one else does

Connect both sides

Describe the validation

Turn it into code

Explain the validation

Apply it to input data

Explain the results

BrickBrick

Business

Rules

in

Closures,

‘Kay

A rule is simple

Complex rules compose simple rules

Rules divorced from input fields

Re-useable rules close over setup

Still alpha

In active use at a major client

Detailed, user-defined error

messages

Describe the situation

@Description = (

[label => method_name => \%setup],

	
 	
);

Make it look less like code

Might come from a config file

Explain profile

some_label
 __compose_AND
 __compose_ONE_OF
 __fields_are_something
 __compose_AND
 __compose_AND
 _value_length_is_equal_to_greater_than
 _value_length_is_equal_to_less_than
 _is_only_decimal_digits
 _is_only_decimal_digits
 __compose_ONE_OF
 __fields_are_something
 __compose_AND
 _is_YYYYMMDD_date_format
 _is_valid_date
 __compose_ONE_OF
 __fields_are_something
 __compose_AND
 _is_YYYYMMDD_date_format
 _is_valid_date

Putting it together

@Description = (

[label => constraint_name => \%setup],

	
 	
);

my $Brick = Brick->new();

my $profile =

$Brick->profile_class->new(\@Description);

my $result = $Brick->apply($profile, \%Input);

Results object

@Results = (

[label => [1 | 0] => \%errors],

	
 	
);

Tree data structure

Brick::Result can play with it

Error Hash

$errors = [

	
 { handler => $method1, message => ...,

errors => [...] },

	
 { handler => $method2, message => ...,

errors => [...] },

	
 ...	
];

Describe what happened

just_right: passed three_digit_odd_number

too_long: failed three_digit_odd_number
 long_number: _value_length: [12345] isn't 3 or fewer characters

too_short: failed three_digit_odd_number
 short_number: _value_length: [13] isn't 3 or more characters

even_number: failed three_digit_odd_number
 even_number: _matches_regex: [24] did not match the pattern
 even_number: _value_length: [24] isn't 3 or more characters

two_fields: failed twofer
 even_number: _matches_regex: [24] did not match the pattern
 short_number: _value_length: [13] isn't 3 or more characters

The brick interface

Closes over setup data

Has access to all input

True if everything is okay

die with a reference if it isn’t

A validation routine
my $sub = sub {

my $input = shift;

return 1 if exists $input->{cat};

die { # result error message

handler => 'Cat key check',

failed_field => 'cat'

message => "No field named 'cat'",

};

}

Add to bucket

$brick = $bucket->add_to_bucket({

name => 'cat key checker',

description => "Has field named 'cat'",

code => $sub

});

Put it in the communal bucket

Use the brick in different relationships

Compose bricks
sub _us_postal_code_format
	
 {
	
 my($bucket, $setup) = @_;
	

	
 $setup->{exact_length} = 5;
	

	
 my $composed = $bucket->__compose_satisfy_all(
	
 	
 $bucket->_value_length_is_exactly($setup),	
	

	
 	
 $bucket->_is_only_decimal_digits($setup),
	
 	
);
	
 }

Make trees
my $postal = $brick->_postal_code_format({ ... });
my $street = $brick->_address_format({ ... });
my $usps = $brick->_usps_check({ ... });

my $address = $brick->__compose_satisfy_all(
$postal, $street, $usps);

my $basket = $brick->__compose_satisfy_all(...);

my $order = $brick->__compose_satisfy_all(
$address, $basket, ...);

Validation profile
some_label

 __compose_AND
 __compose_ONE_OF

 __fields_are_something
 __compose_AND
 __compose_AND
 _value_length_is_equal_to_greater_than
 _value_length_is_equal_to_less_than
 _is_only_decimal_digits
 _is_only_decimal_digits
 __compose_ONE_OF
 __fields_are_something
 __compose_AND
 _is_YYYYMMDD_date_format
 _is_valid_date
 __compose_ONE_OF
 __fields_are_something
 __compose_AND
 _is_YYYYMMDD_date_format
 _is_valid_date

foreach my $item (@profile) {

my $label = $item->[0];

my $method = $item->[1];

my $result =

eval{ $brick->$method->($input) }

my $eval_error = $@;

$result = 0 if ref $eval_error;

push @results,

[$label, $method, $result, $@];

}

Get the results

How to use Brick

Plug-in validation (MVC)

Subclass to adapt

Store all business logic separately

Didn’t cover...

Filters

Selectors

Subclasses

Configuration as code

Conclusion

Many-to-many relationships

Descriptive error messages

Replay validation

